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Abstract

A Finslerian manifold is called a generalized Einstein manifold (GEM) if the Ricci directional
curvature R(u,u) is independent of the direction. Let FO(M, g,) be a deformation of a compact
n-dimensional Finslerian manifold preserving the volume of the unitary fibre bundle W (M). We
prove that the critical points go € F 0(g,) of the integral 7(g,) on W(M) of the Finslerian scalar
curvature (and certain functions of the scalar curvature) define a GEM. We give an estimate of
the eigenvalues of Laplacian A defined on W(M) operating on the functions coming from the
base when (M, g) is of minima fibration with a constant scalar curvature A admitting a conformal
infinitesimal deformation (CID). We obtain A > H/(n — 1) (A f = Af).If M is simply connected
and A = H/(n — 1), then (M, g) is Riemannian and is isometric to an n-sphere. We first calculate,
in the general case, the formula of the second variationals of the integral 7 (g,) for g = go, then fora
CID we show that for certain Finslerian manifolds, 7”(gg) > 0. Applications to the gravitation and
electromagnetism in general relativity are given. We prove that the spaces characterizing Einstein—
Maxwell equations are GEMs.

Keywords: Generalized Einstein manifolds; Finsler geometry
1991 MSC: 53B40, 53C25, 83C05, 83D05

Contents

1. Introduction 343
2. Generalized Einstein manifolds 344
3. Eigenvalues of the Laplacian on the unitary fibre bundle 360
4. Second variationals of the integral /(g,) 365
5. Einstein-Maxwell equations 371
References 380

0393-0440/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI10393-0440(94)00052-2



H. Akbar-Zadeh/ Journal of Geometry and Physics 17 (1995) 342-380 343

1. Introduction

Much important research has been made to find the right geometrization of the equations
of electromagnetism and gravitation in general relativity. In 1915 Hilbert [9] announced
the two axioms which permit one to deduce the equations of Einstein with the second
member thanks to a variational principle (Misner—Thorn—Wheeler, pp. 431—434) [15].
This method of deformation is applied to different and heterogeneous action function-
als defined on the space—time M, [6,15]. An analogous procedure of the standard model
of Kaluza [10], Klein [11] (M4 x T), applied to the total scalar curvature of a pseudo-
Riemannian metric of dimension five determines the equations of Einstein-Maxwell in the
absence of matter and electric charge, the case of pure electromagnetic field (Lichnerowicz,
pp. 197-198) [13]. The action functional is as in the preceding case, an element of the ring
of functions defined on space-time M4. When the stress-energy tensor T represents the
case of pure matter electromagnetic field (T = pu @ u + 1), the solutions proposed by
[6,13] do not seem satisfactory. That is why we pose the problem in the following form:

To find a geometric space and an action function depending on the curvature of this space,

such that the critical point of deformed total action function is a solution of the equations

of Einstein—-Maxwell.

A solution to this problem is the object of this work. In order to know the difference between

our viewpoint, and one usually proposed, we will observe that:

(1) The geometric space in question is the unitary tangent bundle on the space—time M.

(2) The action functional is constructed by means of a certain scalar curvature of a con-
nection of directions. It is a priori an element of the ring of functions defined on the
unitary tangent bundle W (My).

(3) The equations of Maxwell with source (§ F = p|u) are obtained by means of Bianchi
identities relative to the connection of directions via the equations of Einstein.

In order that the spaces which characterizes the equations of Einstein with the second
member defined above, are contained in a bigger class of Finsler manifold which we call
here the generalized Einstein manifolds (GEMs).

We are now going to give an overview of our work. After a brief recall of Finslerian
geometry, we deform the Finslerian metric and calculate the first variational of the volume
element of the unitary Finslerian fibre bundle W (M). In the compact case, we prove alemma
which permits us to find the variational of the volume W (M). In Sections 2.3 and 2.4, we
calculate the variationals of the Finslerian connection and the corresponding curvature
tensors. To the Ricci tensor of the Finslerian connection we associate a function with scalar
values H (u,u) on W(M), which we call the directional Ricci curvature. This function is
the same for the connections of Finsler and Berwald and is homogeneous of degree zero,
and plays an important role in what follows (it is the analogue in the Riemannian case of
the first member of the Poisson equation in the geometric formulation of the Newtonian
gravitation ([15] p.300)). We deduce from it by vertical derivation a symmetric tensor of
the second order ﬁjk which plays the same role as the Ricci tensor of the Riemannian
geometry. Let (M, g;) be a deformation of the Finslerian metric and A(x) a differentiable
function on M. The lemma of Section 2.5 gives us the variational of A(x) H (4, u). Then we
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calculate the expression of the trace of variationals of ﬁjk as well as of the Ricci tensor of
the Berwald connection Hj. In Section 2.6 we suppose that M is compact, and we denote
by F 0(g;) a deformation of the Finslerian metric which preserves the volume of W (M).
By means of the Ricci curvature Hjx we define on W (M) the scalar-valued function A, =

trace( ;) — A (x) H; (u, u) depending on ¢ and the corresponding integral / (g;). We prove that
go€<EF 0 (g:) is a critical point of 1 (g,) if and only if 1-1jk is proportional to the metric tensor
Hijx = C(2)gjx (z € W(M)) (t = 0,g = go). We conclude from it that C is a function
independent on the direction. Such a manifold will be called a GEM (Theorem 1). In Section
2.7 we study the particular cases when X is constant. In order to simplify the variational
calculus of the Finslerian scalar curvature, we choose a deformation which leaves invariant
the torsion tensor and we then calculate the trace of the vanational of Finslerian Ricci
tensor. We prove, as before, that the critical points of the total Finslerian scalar curvature
define again a GEM (Theorem 2). In Section 3.1, we determine the conditions in order
that the Finslerian manifold be a totally geodesic fibration (and minima) (Theorem 3). In
the compact case we give an estimate of the eigenvalues of the Laplacian A defined on
W (M) operating on the functions coming from the base M. When (M, g) of constant scalar
curvature H = trace(H; 7), has a minimal fibration and admits a conformal infinitesimal
deformation (CID). We prove the inequality A > H/(n — 1) (Af = Af). Besides, if M is
simply connected and there is equality, then (M, g) is isometric to an n-sphere (Theorem 4).
This theorem generalizes an analogous result in the Riemannian case [14], the method of
proof used here being entirely different. In Section 4.1 we obtain the formula of the second
variationals of the integral /(g,) in the case where (M, go) is a GEM and A = %n. In
Section 4.2 we study the case of a CID and prove that for certain generalized Einstein
metrics the second variational is positive (Theorem 5). The rest of the work is devoted
to the application of the preceding method to the solution of the problem posed at the
beginning. Let (M, g) be a compact pseudo-Riemannian. We denote by w the lifting of the
pseudo-Riemannian connection on the tangent bundie. Let F be a skew-symmetric 2-tensor.
To the pair (w, F) we associate a connection of directions, without torsion, denoted 7 on
the unitary bundle W (M), admitting two curvature tensors H and G. We consider then
a deformation of the metric g leaving unchanged the 2-tensor F. After having proved a
lemma analogous to Lemma 3 of Section 2.5. We take up the variational problem similar to
Section 2.6 and characterize in this case the GEM (Theorem 6). In Section 5.4 we proceed
to the identification of the elements introduced with the elements coming from gravitation
and electromagnetism.

2. Generalized Einstein manifolds
2.0. Preliminaries

Let M be a connected, paracompact, n-dimensional manifold of C* class. Let TM — M
be the tangent bundle and p: V(M) — M the tangent bundle of non-zero vectors of TM.
Let p~1TM — V(M) be the fibre bundie induced from T M by p. A point of V(M) will
be denoted by z = (x, v) where x = pz € M and v € Tpz(M). We denote by TV (M) the
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tangent bundle to V(M). Let (x') (i = 1,...,n) be a local chart of the domain U ¢ M
and (x/,v') the induced local chart on p~!'(U) where: v = v(§/8x') € Tpz(M). We
suppose that M is endowed with a Finslerian metric. Such a metric is defined by the data
of a function F on T M satisfying the following conditions:

0} F>0 and C*onV(M),

2) F(x,Av) = AF(x,v), A€ R™,

1 3%F?

3) gk = 330307

is positive definite. It is called pseudo-Finslerian if g;; defines a non-degenerate quadratic

form (det(g;;) # 0). Itis clear that g;; is a homogeneous tensor of degree zero in v and we
have

gij (V' = g.(v,v) = F?, Q.1

where g,( , ) denotes the local scalar productin z € V(M). Henceforward V will denote the
Finslerian connection associated to g [1]. It defines a covariant derivative of the fibre bundle
p~'TM — V(M). We call the indicatrix in x € M, the hypersurface S, in T (M) defined
by the equation F(x,v) = 1. We denote by W(M) = U,cm Sx the fibre bundle of unitary
tangent vectors to M. Let u: M — W (M) be the unitary vector fields and @ = Tu; dx’
the corresponding 1-form. We denote by (dw)” ! the (n — 1)th exterior power of dw. The
volume element of the fibre bundle W (M) will be represented by a (2n — 1)-form on
W (M) [1}:

(=N - n(n—1)
=—" ¢, P=oAdw)"!, N=—
n—1)! @ (de) 2
We suppose M compact, as in the theory of the harmonic forms, we introduce on the
differential forms defined on W (M), the codifferential operator 8, adjoint to d, in global
scalar product defined on W(M). If 7y = a;(z)dx’,z € W(M), is a horizontal 1-form on

W (M), we have proved in [1] that

n (2.2)

8w = —(Viaj —a;VoT/), (2.3)

where T/ is the vector trace of the torsion tensor. Similarly, 7, = b;Vu/ (bjv/ = 0)isa
vertical 1-form on W (M), we have [2]

smy = —F(V}bl +bIT)) = —Fg/i8?b; (3; = 3/31}1) : (2.4)
Henceforward, we denote by (Vy, V,:) the components of the Finslerian covariant derivative
with respect to coframe (dx¥, Vv¥) and frequently use the formulas (2.3) and (2.4).

2.1. Variationals of the volume element of the unitary fibre bundle

A deformation of a Finslerian metric will mean a one-parameter family of this met-
ric. Supposing the deformation of the metric, @ as well as n depend on the parameter
t € [—e,¢), ¢ sufficiently small > O we will calculate the derivative of n with respect to ¢.
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First of all we have
8F, . ; SF' . . .
w = 5_1): A, o' = de' @G =3, (2.5)
where the notation 7 denotes the derivative with respect to ¢. This derivative commutes with
the differentiation d, so from (2.2) we have

& =o' A[do)" '+ (n - Do [dw)?Add. (2.6)

By a simple calculation from (2.5), we obtain

SF'/8v' =g\ u" — (F'/Fu; (u=F'v), Q.7
o =g udx' — (F'/Fo. (2.8)
Let us denote by 8 = Vv, and 8 = Vu, we have
B/ = F1(&, —uwu)et w;jp’ =0). (2.9)
From (2.5) we get by differentiation
do = a? /.dxj/\dxi—i-F 2 /.ﬂf/\dx", (2.10)
SvtdxJ Svidv/

where (8/9x/,8/8v/) denotes the pfaffian derivatives with respect to (dx/,6/), define at
z € V(M) abasis of T, V(M). The first term of the right-hand side of (2.10) is a 2-form in
dx, by putting it in (2.6), it cancels the second term. The coefficients of the second term are
given by

8°F’ F’ 3F’
F— = gli- - —=&ij — g’jru’u; - g’i,u’uj + —uju;. 2.11)
Svidv/ I F F

Taking account of (2.8), (2.10) and (2.11), the derivative of ¢ can be written as

@' =-n(F/F)® +g,u dx' A (o)
-2 i [
+(n — Do A ([dw)"™* A gj;p) Adx', (2.12)
where

F'/F = 3¢’ u'ul. (2.13)

To evaluate the last two terms of the right-hand side of (2.12) we take an orthonormal frame
(/) (i =1,...,n) at x € M such that, u = e,, we have u" = 1,u®* =0,8, = 0,8, =
wen(@ = 1,...,n — 1) where w;; is the Finslerian connection. Thus the last term of the
right-hand side of (2.12) is g°*g’, & and the last but one term is equal to g'"g’;, @, thus
their sum is g"/ g’; ;& Dividing the sides of (2.12) by (n — 1)! we get the following lemma.

Lemma 1. The first variational of the volume element of the Finslerian unitary fibre bundle
is defined by

n = (gij - %nuiuj) g in- (2.14)
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2.2. Compact case

Lemma 2. Let (M, g) be a compact Finslerian manifold and f a differentiable function
homogeneous of degree zero in v on W(M) and t = g'. Then we have the formula

/ f -trace(r) - = / [nf+%F2gij8i'6;f]t(u,u)n. (2.15)
wW(M) W(M)

Proof. Let f beadifferentiable functionon W andt;; = g’; i Consider the field of covectors
defined by its components

Yj = f : tijui.
To Y we associate the vertical 1-form on W (M) defined by
Y=Y —u-g(¥,u), Yo=0v7Y=0, (2.16)

where 0 denotes the multiplication contracted by v. Thanks to the homogeneity of the torsion
tensor we have

Fgls?¥; = g8} fro; + f -trace(t) — nfru'ul (87 = 8/80'). (2.17)
However,
ij go R | ijge [ ge -1\ _1_ij oce
2782 fro; = L Fgis: (ajfsz ) 1glinnd38 f.
Substituting this expression in (2.17) we get
— 1 g2 ijsece -2 ijsey
f - wace(r) = (nf + LF2g818] f ) 100F 2 + Fg/ 57 ¥,
—~3Fg'isp (87 frooF ). (2.18)

By (2.4), the last two terms of the right-hand side of this equation are divergences over
W (M) [2]. Since M is compact we obtain the lemma by integration over W(M).If f = ¢
is a function on M we have

/ @ -trace(t) -n=n / ot(u,u)n, (2.19)
W(M) W (M)

where ¢ (1, u) = t;juiuj. Now vol W = fw(M) n and by putting ¢ = | in (2.19) we get

(vol W) = f [trace(t) — %nt(u,u)] n

W(M)

1
=3 / trace(t)-n:% / tu,w)y. O (2.20)

W(M) W (M)
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2.3. Variationals of a Finslerian connection

Let U(x') C M be alocal chart of M and p~! (U)(x/, v') the induced local coordinates
on W(M). The one-parameter family of the Finslerian connection is represented by the
matrix [1]

& p1gy= T 0,0 dxf + TV (x, 0, Vo, (2.21)

where V is the Finslerian covariant derivative associated to the one-parameter family of the
Finslerian metric. We will calculate first the derivative with respect to ¢, the coefficients I
of the Finslerian connection. Now these coefficients are defined by [1]

=38 (5k8mj + 8igmk — dmek;)

— (Tijs *SOk + Tiks r*soj N Tkjsgim ”Om) 2.22)
and
Thy= 38788 (8= ropbi=rg)- (2.23)
jk =2 J Sxk 3ok

Now from (2.22), by deriving with respect to ¢, we get
F'*i,-k = 18" (Vitmj + Vitmk — Vimtjx)
- (T" 1sG* + T, G" — Tkjsgi'"G"m) : 2.24)

where t;; = g,f ] and Gij = 1"”0 i We multiply the two sides of (2.24) by v/, taking note of
the homogeneity of Finslerian torsion tensor

™o = G = § (Vatly + Vor's — Vitai) — 277, G*, (2.25)
We multiply this relationship by v*:

I =2G" = Vot'y — 1 Vitge. (2.26)
Substituting (2.25) and (2.26) in (2.24) we get

Aijk —_ rm’jk + Tijrr,*rOk

= % (th':’- + Vjtik — Vitkj) — %Tikr (Vjtro + V()trj - V’tj())
+4 Ty (V'8 + Vor'” — V1) + 01 (Vor'y - }V'i0). @.27)

where Q' jrk is the third tensor of curvature and of the Finslerian connection defined by

o' jrk = TiksTsjr - TirsTsjk' (2.28)
If we derive the two sides of (2.21) with respect to ¢ we get

o' = A pdxk + T, Vo, (2.29)
where A is defined by (2.27).
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2.4. Variationals of Finslerian curvature tensors

The Finslerian curvature is a 2-form on the unitary fibre bundle W (M) defined by

.Q’j =dw'j+w',/\a)’j. (2.30)

The derivative with respect to ¢, commuting with the differentiation d is given by
N i i { /

.Q’j—dw'j+w,/\w'j+w',/\w'j. 2.3
In virtue of (2.29),we have

do"; = dA"j Adx! +dT" ) AV + T, dVY'. (2.32)
Now

V' = dv" + v, (2.33)
From which, by taking into account (2.30)

dVv" = VP Ao’ + 27 (27 =27, (2.34)
Putting these relationships in (2.32) we have

do’; =dA [ Ade! +dT" ) AV + T, 27— T, ol AV
Thus (2.31) can be written as

2" = VA A VT AV — AT T A AV T 27 (235)

Now we are going to calculate the derivative of the curvature 2-form 2, as a function of
the derivative of the curvature components. This 2-form can be written [1]

2= 3R df Ad! + Py ek AV 4 500, VA VY, (2.36)

where the R, P and Q are the curvature tensors of the Finslerian connection. The derivative
with respect to ¢ of the two sides of (2.36) is

Q" =3 (R,ijkl + P Ay — PijerrOk) dxk A de!
+ (Pl + @A) dxk A VY 307 Tk AV, (2.37)

By identifying the coefficients of the terms in dx A dx,dx A Vv and Vv A Vv of the two
sides of (2.35) and (2.37) we get successively:

R = VA s = VA + Py A g = Pl ATy + T, Ry, (2.38)
Pl = —VIA jp — A" Ty + @y Alge + VT = T, VoT Yy, (2.39)

Q" i =VT" = ViT",. (2.40)
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The formulas (2.38)—(2.40) give us the variationals of the curvature tensors of a Finslerian
connection. Finally, let 7' j be the one-parameter family of the Berwald connection 1-form

associated to g, defined on p~! (U) by [3]
7 =G v, det. (2.41)

Denoting by H and G the two curvature tensors of this connection and applying the above
method we find

H", = DG" ;- DIG" , +G' ;,,G", - G';,G",, 242)

where D is the covariant derivative in 7' j defined by (2.41).
2.5. Variationals of some Finslerian scalar curvature tensors

2.5.1.
Let us recall that the curvature tensor R of the Finslerian connection is related to the
tensor H of Berwald connection by [3]
R = H' 1y + T Ry + ViVoT ' — ViVoT'y
+VoT', VoT"j — VoT', VoT "1,
Rjx=Hjx + T, R gy + ViVoT; — ViVoT',
+VoTY, VoI — VoT, VoI (2.43)
Let us denote by R;; = R";,j and H;; = H',, j the corresponding Ricci tensors, we have
by (2.43)
Rijv'v/ = H;jv'v/ = H(v,v). (2.44)

Lemma 3. Let (M, g,) be a deformation of a Finslerian manifold and let ).(x) be a differ-
entiable function on M, we have the formula

AX)H'(u, u) = divergence over W (M) + @t (u, u), (2.45)
where:

& =} [V’ - nVoT’ — F2g'iss (v;/F)]. (2.46)

¥; =—(F‘1V0yj+F8;f), (2.47)

Yi = 2Mx)VoT; — Vik — T; VoA, (2.48)

f=- (%) F2VoVo. (2.49)
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Proof. The derivative of H (v, v) with respect to ¢ is obtained from (2.38) and (2.42):
Rjjv'v! = Hjv'v/ = 2V,G" — VoG"; + 2% T,G". (2.50)

Let A(x) be a differentiable function on M. Let us calculate A(x) H'(, u). By (2.50), (2.26)
and (2.27) we have

, AG" G" AG'
— . — . — _..__l
AOH (u,u) =2 [v, ( ) ) Az VOT,] Vo |+

G/i-VO)» 2G/i
+ 'F2 + 5 (QAVOT; — V;A)

= 8(uv) — 80 + F2Vot' gy — §F 2V 10y; + 3 F2Vgt' Voa,
2.5

where § denotes the codifferential with respect to the volume element 7 (2.3). 1 and o are
defined by

p=rx)G"F2, o =22x)G"F2 (2.52)

The first two terms of the right-hand side of (2.51) are divergences over W(M). We are
going to calculate the last three terms:

F2Vt' ovi = Vo (fio}’iF_z) ~ ' VoY F2,
19t VorF~2 = Ly, (tiiVOAF_Z) — L1, Vg VoA F 2,
—3Viy Fr = -}V ((too/Fz) Yi) + jto0¥iVoT' F~2
+ 100 (Vi}’i - YiVOTi) F2
Thus (2.51) can be written as
A(x)H'(u,u) = divergence over W (M) + %t(u,u) (V,-yi - yiV()Ti)
+fth i — g Voyi F72, (2.53)

On the other hand, we have

v f=g"8t0- f = Fg!'s; (—;;f) + g f —87t0d S
TR 100 i ce
=Fg'83Yi+n5 f — 6851, (2.54)

where 7 is defined by (2.16) and f by (2.49). By putting (2.54) in (2.53) we see that the
coefficient of F~! tio this relationship is the covector ¥ defined by (2.47)

F~'gtiow; = 38" 83100¥; F~!
=878} (F_ztoo'lfj) F+ 3t u)poF ™ — 3t (v,v)g" 8} (F"¢,-).
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Let us put

Zj = tuuyyy, 2 =Z; —u;ZoF .
Then we have

F"giftiovﬁj = divergence over W (M) + %nF‘lt(u,u)wo

—Lglit(v, )8 (F’le) . 2.55)

By taking into account (2.53)—(2.55), we obtain the lemma. D
In particular: If A is constant, we have

=0, vy =2V, y;=-21F'VoVT,.
Thus the formula becomes

AH'(u,u) = divergence over W(M) + At - t(u, u), (2.56)
where

T = (V'VoT; — VoT;VoT") + g"/85(VoVoT)). (2.57)

7 is up to a sign, the sum of the codifferential of VoT; and of F~1VyVoT;.

2.5.2.
By means of the function H(v,v) = H;; viv/ we construct the tensor of second order
defined by

i = 18550 H (v, v) = § (Hi + Heg + 080 Hiy ) (87 = 8/807). (2.58)
Lemma 4. We have the formula

gjkl?]fk = nt - t(u,u) + divergence over W(M).
Proof. By derivation we have

SYH'(v,v) = 8¢ H' (u, u) F? 4 2u  H' (u, u).
A second derivation gives us

836 H'(v,v) = F&7 [Fo3(H' (u,u))] + v;8; [H'(u, u)]
+28jiH' (u, u) + 208} [H'(u, w)]. (2.59)

Taking into account (2.58) and the homogeneity of the terms introduced with respect to v,
by dividing by two, and by multiplying the two sides by g/* we obtain

g'*Hj = 3g/% 878 H' (v, v) = nH'(u,u) + 3 Fg/*87 [Fo}(H'(u,u))].  (2.60)
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Now the term n H' (u, u) is defined by the formula (2.56) where A = n and the last term of
the right-hand side is a divergence (2.4). )

Lemma 5. We have the formula

g’*H}, = ¢/* A}, + divergence over W(M). (2.61)
Proof. By deriving the two sides of (2.58) with respect to ¢ we get

g H), = /M — Yo"V 8 HY,. (2.62)
Now the tensor H satisfies the identity of Bianchi [3]:

SmH' jjy + DiG' i,y — DGy, = 0. (2.63)

We contract i and k and multiply by v/, we obtain taking into account the homogeneity of
tensor G

whence
38"V 8 Hj, = =38/ DoGip + 87" 8;GjmG" + 8" Gym G,
=—48/"Do (G},,) + Fg'™8 (GomG" /F)
= divergence over W(M).

Substituting this expression in (2.62) we obtain the lemma. a
2.6. Generalized Einstein manifolds

Let M be a compact Finslerian manifold and H ;. the symmetric tensor defined by (2.58).
Let A be a differentiable function on M. We consider the scalar function on W (M) defined
by

H=H = Ax)Hu,u) (H = gf'"ﬁ,k) . 2.64)

Let F(g,) be a 1-parameter family of Finslerian metric. We denote by F?(g,) the subfamily
of the metric such that for every ¢ € [—¢, €] the volume of the unitary fibre bundle corre-
sponding to g, € F 0 s equal to one. We look for g, € F 0(g,) which makes the integral
I(g;) extremum:

I(g) = / Hn, (2.65)
W(M)
with
m=1 (2.66)

W (M)
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We have successively:

(I?,), = (gjk — Aujuk), Hy + (gjk — Aujuk) I?j’k, (2.67)
(uj), =~ (F/F)ul = —frwund (1 =g};). (2.68)
Also

(ujuk)l . I?jk = —H(u,u)t(u,u).

It is easy to see that the derivative of g/* with respect to ¢ is — ¢/*. Thus the first term of
the right-hand side of (2.67) can be written as

. s o P .
(g"‘ — Au’uk) Hj = — [H”‘ - AH(u,u)u’uk] tik. (2.69)
After Lemmas 3 and 4 we have
(gj" - Auju") I?;k = divergence over W(M) + (nt — ®) t (u, u), (2.70)

where @ and 1 are defined by (2.54) and (2.57). On the other hand, since the derivative of
the volume element n; with respect to ¢ is defined by (2.14) we have

(Amy) = (B) ne + A, [trace(t) — Jnruw)]. @.71)

Thus taking into account (2.69)—(2.71) the derivative of /(g,) can be written as

I'(g) = (A1) = — / Ay, (2.72)
W(M)

where ( , ) denotes the global scalar product and A is defined by

Ak = gik _ AH(u,u)ujuk — (nt — d))ujuk - ﬁ, (gjk - %nujuk) R (2.73)
where

H; = H, — AH, (u, u).
The hypothesis that the volume of W (M) is constant, yields after (2.20):

(D,1y=0, D*=g*_lnuu 2.74)

In order that (r = 0) go € F%(g:) gives the extremum of 7 (g,) it is necessary and sufficient
that there is a constant a such that at t = O:

I?jk ~AH(u,wujuy — (nt — Pujur — H (gjk - %nujuk)

=a (gj - %nujuk) . (2.75)
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By multiplying the two sides by u/ and u* successively we get

Hu,w) ~ AH @) = (0t = @) — A (1= §n) =a (1 - 4n). (2.76)
Putting in (2.75) the expression A H (1, u) + (nt — &) taken from (2.76) we get

I:Ijk - A (gjk — ujuk) ~H@u,uwujuy =a (gjk — ujuk) . 7D
Multiplying the two sides of (2.77) by v/ we have

F2foc = vHoo  (Hoo = Hyjv'v/), (2.78)
whence by vertical derivation

2v; Hox + F2Hjx = gjk Hoo + 2vi Ho;.
Using (2.78) we get

Hjx = Hu,u)gjk. (2.79)

Multiplying the two sides by g/* and contracting:

A =g/ = nH(u,u). (2.80)
Thus (2.79) can be written as
Hjx = (1/n)Hgjx. Q2.81)

The left-hand side of this relation is defined by (2.58). From it we deduce by vertical
derivation

8o Hik = 85 Hi = (1/n) (85, H gjk + 2H Tjkm) .

ﬁjk being homogeneous of degree zero in v satisfying (2.58), by multiplying the two sides
of the relation by v' and v* taking into account the homogeneity of tensor T, we get

snH=0.

Thus A and after (2.80), H (u,u) does not depend on the direction. Multiplying the two
sides of (2.77) by g/* and using (2.80) we get

(1+A—-n)H(u,u) =a. (2.82)

X being a function on M, then H(u,u) = (1/n)H is a function on M. Substituting the
values of H(u,u) and H in (2.76) we obtain

(r=4n)a+a+r-m@nr -2 =0. (2.83)

We call the expression H (u, u) the Ricci directional curvature.
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Definition. A Finslerian manifold is called a generalized Einstein manifold if the Ricci
directional curvature is independent of the direction. That is to say

Hji = C(x)gjk(x,v), (2.84)

where C(x) is a function on M.
We have shown the following theorem.

Theorem 1. The Finslerian metric go € F 0(g,) at the critical point [t =0, go = g(0)] of
the integral 1(g,) defines a GEM.

2.7. Particular cases

(1) We suppose that X is a non-zero constant. From (2.82) it follows that H (u, u) is
constant. Thus (2.83) is reduced to

(A= 4n)a+d+r-m@-nr=0. (2.85)

Hence t is constant. Now after the expression of t defined by (2.57) t is a divergence so
that M being compact, by integration on W (M) we find that t =0 att = 0,a # 0. Thus by
(2.85) it follows that A = %n. By (2.82) we then have at ¢ = 0:

Corollary 1. For A non-zero constant, the Finslerian metric go € F°(g) att = Oisa
critical point for the integral I(g;), and defines at this point a manifold with constant Ricci
directional curvature and we have at this point t = 0.

Hu,u) = =C, H= H= (2.86)

NS

(2) Case A = 0. In this case the integral / (g,) defined by (2.65) is reduced to
h(g) = f A, (2.87)
W(M)
where g; € F(g,) and H, = g'/ H;;. The derivative of ;(g;) is
I;(g) = —(A,1). (2.88)
Therefore
Ajj = Hyj —ntuju; — H (g,-,- - %nu,-u,-).

Following the reasoning of the preceding section we find that H (u,4) = a/(1 —n). On the
other hand, M being compact, by (2.83) we have t = 0. Therefore ¢ = 0. Thus att = 0,
we have
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Corollary 2. The Finslerian metric gg € F O(g,) which makes extremum the integral I(g,)
is one for which the Ricci directional curvature is zero and we have at this point T = 0.

(3) Let us consider an integral of the form
h(g) = / Hy(u, u)n,.
W(M)

Let us look for a metric gg € F O(g,) such that 72(go) is an extremum. By a reasoning
identical to the previous one, we find that go must satisfy

H(u,wu;uj — tuju; — H(u,u) (g,-j — %nuiuj) =a (g;j — %nu,-uj),

where a = constant. From this relation, it follows immediately that fort = 0 we have t = 0
and H;; = 0. We also get the same result as before.

(4) Let (M, g) be a Finslerian manifold with constant sectional curvature in Berwald
connection [3).

We suppose also that the torsion tensor satisfies the second-order differential equation

VoVof +4KF2f =0, f=gU8T;, (2.89)
where K is constant. Then (M, g) is a GEM with H(u,u) = (n — 1)K and t = 0.

Proof. If (M, g) is a Finslerian manifold of constant sectional curvature in Berwald con-
nection we have [3]

H'jy = K (8,81 — 8,8jx) (8 Kronecker symbol), (2.90)
where K = constant and

VoVoT';, + KF*T!, =0, .91)

where T is Finslerain torsion tensor. By (2.90) it follows that H;; = (n — 1)K gj and by
(2.90) and (2.91) we obtain with a straightforward calculation

2t =VoVof +4KF*f, f=g"8T;. (2.92)
By (2.89) the right-hand side of (2.92) is zero. Thus (M, g) is a GEM. O

2.8. Variationals of Finslerian total scalar curvature

2.8.1.
Let (M, g:) be a deformation of a compact Finslerian manifold. Let S;; be the symmetric
tensor defined by
Sik = VoT %, YoT"; — VoT;VoT' ;. (2.93)

In view of studying the variationals of the Finslerian scalar curvature we first prove the
following lemma.
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Lemma 6. Let (M, g;) be a deformation of a Finslerian metric such that the torsion tensor
be invariant under this deformation we have

gj"S'jk = ¥ (T) t(u,u) + divergence over W (M), 2.94)

where 1 denotes the derivation with respect to t € [—¢,¢) and ¥ (T) is a divergence on
W (M) defined by

¥(2) = -1 82 + 8(FVoZ) — 2VpZo) (2.95)
with

Zi = X; — ™8 Yu, (2.96)

X; =2 [gf"a,.'T’jkvoT, — 2Tk 8T + 8,-’T,V0T’] , 2.97)

Yik = 2V0T ", Tjrk — 4VTjnk T’ + T:VoTx — YoT; Tk + 2VoT, T

Before proving the lemma, we remark that it remains valid without the hypothesis on the
invariance of torsion tensor. In this case one must add to y(T) another function of 7. We
have made the hypothesis in order to reduce the calculations.

Proof. By hypothesis 7’ = 0 we have

. / . ’ . . .
(VOlek) — _28;lekG 5 + TsjkG”s _ T'skG,sj _ T!stlJ'k’ (298)
whence
) , ’ : ) ) )

g-’k (VOT’,"VOT’U) = 2V0T"‘i [—28; ’jkG" + T‘jkG”s - 2T‘,“G"j]. 2.99)

By a calculation identical to the preceding, we get
. . / . . ,
gl (VOT,- vor'jk) =2 [ngB;T'jkVOT,- +8°T; VOT'] G
+[TiVoT® ~ VT, T* + 2V T, T™ ;] G",. (2.100)

Taking into account (2.99) and (2.100) we have

g’*S), = X;G"” + Y%,G", (2.101)

where X and Y are defined by (2.97). Now the last term of the right-hand side can be
written as

Y5,G", = Fg®™s? (Y,-kc;"' /F) — g8tV G"
= —g**8°Y;xG" + divergence over W (M),
where we have put

Y5, = g Yu.
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Thus (2.101) can be written as

gij'jk =Z;G". (2.102)
Now G is defined by (2.27). The remaining calculations are similar to those made in the
proof of Lemma 3. S
2.8.2.

The Ricci tensor of the Finslerian connection is defined by (2.43), whence the scalar
curvature

R =H + S (2.103)

with R, = g/*R;; H, = g/*Hji; S; = g/*Sjk. As in Section 2.6, let us find a Finslerian
metric g € FO(g,) which renders extremum the integral /3(g,) defined by

I3(g) = f Rin;, fm=1. (2.104)

W(M) W(M)

Now we have

R = =t [§ (Hju+ Hig) + S| + 7% Hijy + 875 (2.105)
After Lemmas 4 and 5 we have

g’*H'y = ntt(u,u) + divergence over W(M), (2.106)

where 7 is defined by (2.57). M is supposed compact on deriving with respect to ¢ the
integral /3(g,) and using the formulas (2.94) and (2.106) we are led to put

Bjy = % (ij + ij) + Sjk — Y1(Tujur — R (gjk - %nujuk), (2.107)

where Y (T) is defined by ¢ (T) = nt + ¢ (T).
Thus at ¢ = 0, for gg to render extremum the integral I3(g;) it is necessary and sufficient
that we have at this point

Bjy=b (gjk - %nujuk) , (2.108)

where b is a constant. Let us multiply the two sides of (2.108) by v/ and v* successively
we have

(Hoo/F®) = ¥(T) = R (1= 4n) =b (1 - in). (2.109)
Substituting the expression of ¥|(T) defined by (2.109) in (2.108) we get

3 (Hj + Hyj) + Sji
= (Hoo/F?) wjux + (R +B)hjk,  (hjic = gy — uju). (2.110)
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Let us multiply both sides of (2.110) by v/, taking into account the homogeneity of the
tensor Sjz (Sox = 0 = Sio) we have

F?Hor = Hoovr,

whence by vertical derivation
Hy = (Hoo/Fz) gjk- @.111)

After the reasoning made in Section 2.6, Hoo/F? does not depend on the direction. Thus
(M, go) is a generalized Einstein manifold. On multiplying (2.110) by gfk we get

(Hoo/Fz) +(n-2R+(n—-1b=0. 2.112)

Thus it follows that the scalar R is independent from the direction. Let us put in (2.109) the
expression of Hop/F? drawn from (2.112) we have

Vi(T) = — (%(n _ 2)) R — inb. @2.113)

We also denote by F O(g,), the g(¢) of g deformation preserving volume of W (M) and
torsion tensor.

Theorem 2. Let (M, g;) be a deformation of a compact Finslerian manifold. The Finslerian
metric go € F O(g,) which renders extremum the Finslerian total scalar curvature I3(g,)
defines at this point (t = 0, go) a GEM.

Let us remark that if R is independent of x, then R is constant. From (2.113) it follows
that y;(T') is constant. Now v, (T) is a divergence on W (M). Thus y,(T) = 0. Therefore
R = — (n/(n — 2))b. 1t is the case in particular if (M, g) is a Landsberg manifold
(VoT? ik = 0).

3. Eigenvalues of the Laplacian on the unitary fibre bundle
3.1. Finslerian manifolds whose fibres are totally geodesic or minima

The Finslerian connection defines at each pointz € V (M) a decomposition of the tangent
space to V(M) at this point. We have T,V (M) = H, ® V, where H, (respectively V;) is
the horizontal space (respectively vertical). At the point z € V (M), the Pfaffian derivatives
(ak =& — I 87, 6;) defines a frame adapted to the decomposition of T, V(M). Let us
put the Riemannian metric on V (M):

ds? = gij(2) dx’ dx’ + g;; (D) V' Vo/, 7 € V(M). G.1)

Let EV (M) be the principal fibre bundle of linear frames on V(M) with the structure
group GL(2n, R). Let D be the Riemannian connection associated to (3.1). This connection
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has no torsion and DG = 0. Let (n“ﬂ) (@, =i,i =1,2,...,n) be the matrix of this
connection relative to the adapted frame, we have

DOB) =73, (n% = "%0*), (3.2)
where o* = (dx', Vv’). D being Riemannian we have

[‘Vaﬂ =1G"(3.Gpr + 3pGra — 8:Gap)
—3 {G"* (88, 0i)a + (30, 8p]” — G"*(0r, 8]} (3.3)

where the bracket [3, ,d] is defined by:

[0i .91 = —R" 0ijé;, G4
[3:,871=G";;8;, (3.5)
[57.571=0, (3.6)

where the G'; ; are the coefficients of the connection of Berwald associated to g. Calculating
the right-hand side of (3.3) and taking note of the bracket expression, we obtain the 1-form
of the Riemannian connection n“ﬂ with respect to the adapted frames:

i __ 1 ik k
n'j—a)'j+§g' ROkthv N

wly = = (Th = §Rgy) e = VoI vk, 3.7

. . l . k . k i .
7= (T'jk + iROJ.',() et + VoT',Vok, 7l =,
where o' j represents the 1-form of the Finslerian connection associated to g;; and where
T and R the tensors of torsion and curvature of V. Let x = xq be a fixed point of M and the

fibre manifold p_l(xo) = V" a submanifold of V(M) with Riemannian metric induced:
do? | -1 ()= 8ij(x0, ) dvidv/. (3.8)
Let X and Y be two tangent vectors in (xg, v) € V" to p~ ! (xo) we have
DyX = DyX + A(Y, X), (3.9)

where D is the induced connection and A the second fundamental form of the submanifold
p~ 1 (x0). Let us make explicit the right-hand side. If X = (87) and Y = (87) we have, with
respect to the adapted frame

D87 = T (O3 = 7' 587 + n"j,;ai.

Taking into account (3.7) we obtain
Dyy85 = T'j3(x0, V)87 + VoT " (x0, v)3, (3.10)

where the vectors 9; and &; are orthogonal with respect to the metric (3.1) G(87,9;) = 0.
From this formula it follows immediately that for V" = p~!(x¢) to be a totally geodesic
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(respectively minima) submanifold, it is necessary and sufficient that VoT* k= 0 (respec-
tively necessary g/ "VOTij « = VoT* = 0). This condition is equivalent to the vanishing of
the second tensor of the curvature P of the Finslerian connection.

Theorem 3. In order that the fibres of p: V(M) — M be totally geodesic (respectively
minima) it is necessary and sufficient (respectively necessary) that the second tensor of the
curvature of the Finslerian connection P (respectively VoT; = 0) is zero everywhere.

3.2. Eigenvalues of the Laplacian on the unitary fibre bundle

Let (M, g) be a compact Finsleritan manifold and f a differentiable function on M. By
abuse of notation, we will denote also by f its inverse image on W(M). By (2.3) the
Laplacian of f is defined by

Af =~ [81@ViVif — VifVoT'], ze W), 3.1

Our objective is to study the eigenvalue of A for some Finslerian manifolds. A vector field
X on M defines a CID for the Finslerian metric if

LX)gij = tij = 20(x)gij(z), x € M, z € W(M), (3.12)

where ¢ is a function on M, X is the lifting of X on V(M) and L(X) denotes the Lie
derivative.

Lemma 7. We have the formula

FIVTip'o) = J6(F — 2) + FAVP Vo) + L(n — 2)Tjp/ g, (3.13)
where ¢; = 9;¢, V! denotes the vertical covariate derivative and

Yi =Fo'Vigi, Zi=2Zi—ui(Z,u), Z;=FTip ;. (3.14)
Proof. First we have, using (2.4)

FIVTe! = £V} (FTole') - Tl + F (1)) + LT ')

=82+ (n - T/ go + F*T,T" ;¢ ¢ (3.15)

Now by (2.28) the tensor Q;; can be written as

Qij =T, T*;, — T,T";. (3.16)
Hence

F*T.T7,¢'¢) = FAV2o' Vo' — F2Qij0' ¢/ .
In virtue of this relation (3.15) becomes

FV!Tio'e) = =62 + (n —)Tjo o — F2Qijo'e! + FAVie'Vig'.  (3.17)
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Now we will calculate the last term in another way:
F2V2e V¢l = FV} (Fw’Vr‘wi) + F2o'V29'T,
~F [VVP + 4 0)r + vio'T], (3.18)
but
Vil =—¢'T., VIV = VT —T'V}g;.
Thus
—EX VIV~ F VT, = F2V!Tigly".
Therfore (3.18) can be written as
F2V0 Vg = =87 + FIVITio'p! — F2Qii9'¢’. (3.19)
By deducing from (3.15) the relation (3.19) and on dividing by 2, we obtain the lemma. O
Lemma 8. Let (M, g) be a Finslerian manifold with minima fibration, we have

@Vo(Tjp’) = divergence over W(M) + (2/(n + 2)) F2VPg; V¢’ (3.20)

Proof. By hypothesis, we have
VoT; = 0. 3.21)

Now the torsion tensor is invariant by a conformal infinitesimal transformation, so its trace.
By the Lie derivative of (3.21) we get

viT o + Tigp + F2V!Ti¢/ = 0. (3.22)

Multiplying the two sides of (3.22) by ¢ and using the formula (3.13) of the preceding
lemma, we get

(+ DT gjpo + FAVP@; Vgl + 38(F — 2) =0, (3.23)
where ¥ and Z are defined by (3.14) but
Ti g0 = VouTjo! = Vo[oTjo'| - oo (T
= divergence over W(M) — ¢V (quoj) .

By putting in (3.23) we obtain the lemma. a
We are now in a position to announce the following theorem.

Theorem 4. Let (M, g) be a compact Finslerian manifold with minima fibration and with
constant scalar curvature H = g' H; j admitting a CID. If A is the eigenvalue of the
Laplacian A operating on the functions of the base M (Af = \f) we have

A>H/(n—1). (3.29)



364 H. Akbar-Zadeh/Journal of Geometry and Physics 17 (1995) 342-380

If M is simply connected and A = H/(n = 1), then (M, g) is Riemannian and is isometric
to a sphere.

Proof. Let X be a CID. From (2.50) and (3.12) it follows

L(X)Hop = —(n — 2)Vogo — F2W (3.25)
with
¥ = Di¢' + Do(Ti¢"), (3.26)

where ¢; = §;¢ and D denote the covariant derivative in the Berwald connection. From
(3.25) we get by vertical derivation

8 L(X)Hoo = L(R)8! Hoo = —2(n — 2) Dogi — 2v;¥ — F28}W.
A second derivation gives us
LX) H;j = —(n —2)Digj — gij¥ — vij¥ — v;8;¥ — 1 F*6:87 9, (327

where H; is defined by (2.58). Let us put H = g/ H;;. By hypothesis H is constant we
have in virtue of (3.27)

0= L(X)ﬁ = -—2(pﬁ + gijL(X)ﬁ,'j
=—20H — (n - 2)g" Digj —n¥ — }F?g'i 8550

Multiplying the two sides by ¢ and using the condition (3.21), we have
ineVo(Ti¢)) + (n — DeVig' + ¢*H + F2g/ 57857 (W) = 0.

Replacing the expression ¢ Vo(T; rpi ) defined by the previous lemma, in virtue of (2.4) we get

)_ ——-n———sz?(p-V'i(pj
(n-1) n—D@r+2) 7

+ divergence over W(M) = 0,

H
Ap — ——¢,¢

where ( , ) denotes the local scalar product. M being compactby integrating on W (M) we get

n . g
(FVPp;, FV*¢’) = (Ap — m%fﬂ), (3.28)

(n—1){n+2)
where (, } is the global scalar product on W(M). If A is the eigenvalue of A the eigen-
function ¢ (Ag = Ag). From (3.28) it follows that A > H/(n — 1). Let us suppose
A= H/(n—1) then

Vigi =0.

From (3.22) we then have T;¢g = 0. If X is not an isometry, g # 0 and T; = 0. After a
result of Deicke [5] (M, g) is Riemannian. By a theorem of Obata [17] from the fact that
M is simply connected, we conclude that (M, g) is isometric to an n-sphere. m]
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4. Second variationals of the integral /(g,)

4.1. Second variationals of the integral 1(g,)

4.1.1.

365

In order to simplify the calculations we treat the case A = %n, as indicated in Section

2.7. The function 1:1, under the integral (2.64) reduces to

1:11 = 1:1, - %"Ht(u,“)’ H: = gijl:lij'

We put
1(g) = f A7, f n =1
W(M) W (M)
By (2.72) we have
I'(g) = —(A,1),

where £, = g, and

Ajr = Hj - %nH(u,u)ujuk — %n‘rujuk - A (gjk — %nujuk) .

Fort =0, I'(g0) = 0, (M, go) is a GEM Hjx = Cg,

and we have
Ajy =a (gjk - %nujuk) ,

T l=0= 0.

@.1

4.2)

(4.3)

(4.4)

(4.5)

(4.6)

At,t =0, H(u,u), H and H are defined by (2.86). Before calculating the second derivative

of 1(g,) att = 0, we are going to prove some lemmas.

Lemma 9. Let T' be the deformed torsion tensor of the Finslerian connectionandt = g'.

The following conditions are equivalent:
(l) T/ijk =0,
@ & =0.

The proof is obtained by a straightforward calculation.

Lemma 10. Let (M, g;) be a deformation of a Finslerian metric such that at t = 0, the

derivative of the torsion tensor is zero. Then we have at this point
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R A =0 = §n [(n + 2)t(u, u) — trace(t)] H' (u, ) |1=0
+divergence over W (M), 4.7)

where

H'(u,u) = H,-'ju"uj.
Proof. By formula (2.59) we get

flj’k = gjkH' (u,u) + ka;H'(u,u) + %ij,:H'(u,u) + %st' [FogH'(u,u)]. (4.8)
Multiplying the two sides by ¢/* we get

4 limo = [, H ) + 3877 1,085 H' (u,0)

+yFiitsy [FoyH 0] L (4.9)

Now

8’ 1,087 H' (u,u) = Fg'"8} 2, + [nt (u,u) — trace(r)] H' (u, u) (4.10)
with

Z, = tyiu' H (u,u), 2, =2, —urg(Z,u).
To calculate the last term of the right-hand side of (4.9) we put

Y, = FiX 80 H (u,u),  Yr =Y, —u,g(Y,u).
Using the hypothesis made in the lemma, we have at ¢ = O:

JFtI%82 [FopH (u,u)] = 3Fg/ 83 ¥, + 3(n — g(¥, u). @.11)
Putting the formulas (4.11) and (4.10) in (4.9) we obtain the lemma. 0O

Lemma 11. Let (M, g) be a Finslerian manifold which satisfies the hypothesis of Lemma
10. We have at t = 0:

[trace(t) - %nt(u,u)] g”‘fij'k lr=0 = divergence over W (M)

+4n trace(t) H' (u, u) |i=g . (4.12)

Proof. Let us multiply the two sides of (4.8) by g/, we have

g% A, = nH'(u,u) + Fg’*8} [FpH (u,u)]. @.13)
Now at ¢t = 0, trace(t) is independent of direction. At this point we have

tmce(t)gj"l?;k lr=0 = n-trace(t)H (u,u) |i=¢ + divergence over W(M). (4.14)
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Similarly multiplying the two sides of (4.13) by ¢(u, ) and using the relation (4.10), we
find

t(u, u)g’* H, l1=0 = trace(t)H’(u,u) |i=o + divergence over W (M). 4.15)

Using formulas (4.14) and (4.15) we get (4.12). O

4.1.2
Now we are going to calculate the second derivative of I(g,). For this it is clear that the
derivative of g’/ is —t*/. Using the derivative of 7 defined by (2.14) we obtain

(atigym) = [_21"t’,A,~,~ + AT g} + 1 Al + (A1) (g — Jruu) t,-,] 7.

4.16)
We must evaluate the right-hand side at ¢ = 0, we have
27 Al = —2a (tijtij — %nti)tioF_z) , 4.17)
t=0 =0
01 | 2
(A,1) (g” - 7nu'ul) 6| =a (trace(t) - im(u,u)) , (4.18)
=0 t=0
Aijg"ij =a (gijg,f} - %ng,f;-uiuj) 4.19)
t=0 t=0

Now vol W,(M) = 1, by (2.20), t = g’ is globally orthogonal at g, so that we have for
everyt € [—¢g,¢€]:

f /g =0, (4.20)
W(M)

whence it follows, by deriving with respect to ¢:

f g'gln= f {(t,t)—trace(t)[trace(t)—%nt(u,u)]]n. 421)

W(M) W(M)
Similarly by (2.20), ¢ is globally orthogonal to the decomposable tensor u’u/ for every
t €l—ecl
uiujg,{jn, =0. (4.22)
W (M)
On deriving this relation, and taking into account (2.68), we have
f {t(u w? —uiuig”.. — t(u,u) [trace(t) — lnt(u u)]] n=0. 4.23)
’ ij ’ 3 >
W(M)

In virtue of (4.21) and (4.23), the relation (4.19) can be written as
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(A, g")i=0 =a [(t,t) — gn{t(u,u),t (u,u))
—~ (trace(t) — 4nt (u, u)), trace(t) — %nt(u,u))] . (4.24)
=

It remains to evaluate the term 1"/ A] ; att = 0. First of all we have

Byizo = (87 — dnu/u*) B - € [trace®) — dmw]] . (4.25)
On the other hand, the relation (2.7) can be written as
;) = tjxu® — Jt(u,u)u;. (4.26)
Thus tj"A}k =0 is written as
H* gy o = {4 A - [trace(t) - %nt(u,u)] g/ A,
+4n [trace(®) — (4n+ 1) ) | H' @, w)
2
+C [(trace(t) — %nt(u,u)) + nt(u,u)2 — %n(t,t) — %nzt(u,u)2
+n(n—1) H'Orjop-z]]t_o — nt@,w)t’ li=o . 4.27)

Taking into account (4.16)(4.18), (4.24), (4.27), and the Lemmas 10 and 11, the second
derivative of I(g;) at ¢ = 0 is obtained:

1" (g0) = / [¢+%nt(u,u)t'] .7

W(At) =
+§ [1612 = 4t s, )1 — trace(t) — e, )] (4.28)
where || |I2=(,)and
®=F2QUVT; — VW) (vot" 0— %Vitoo)
+F72Vo¥ [4%0r', = Ti (Vor' 0 - Vi) | (4.29)
W =ln [trace(t) ~(4n+1) t(u,u)], (4.30)
T = ViVoT; — VoT;VoT' + g/82(VoVoT;).

Formula of the second variational. Let (M, g,) be adeformation of a compact Finslerian
manifold. The second derivative of I(g,) (4.2), for a GEM is defined by the formula (4.28).

4.2. The conformal infinitesimal deformation case

In order to study the sign of 7”(gp), we will establish the following lemmas which will
permit us to simplify the expression of I”(gp).
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Lemma 12. Let (M, g;) be a deformation of a Finslerian metric such that we have at the
pointt = 0:

VoT; li=0 = 0, (VoT}) li=0 = 0. 4.31)
Then we have
Tl=0= 0 and t(u,u)t’ ;=0 = divergence over W(M). 4.32)

Proof. 1t is clear that if (M, g) has a minima fibration (VoT; |0 = O)thenzt |;—g = O
and t’ |;—¢ reduced to

v =0 = g [Vi(VoT)) + 8 Vo(VoT;)].
Hence

t(u,u)t’ |;=0 = divergence over W(M) — V't (u,u)(VoT;) ;=0
+8787 [t ) Vo(VoT;)'] li=0 — 8”871, u)Vo(VoT;) li=o
= divergence over W (M)

+8" {Vo (871 (u, )] — Vi [£(u, )1} (VoT}) |1=0
= divergence over W(M). o

Lemma 13. (M, g,) be a Finslerian manifold and ¢ be a differentiable function on M.
Then we have the following formulas:

(dp,dp) = n(dg,u)? + divergence over W(M), (4.33)
TiVipVop = 1/(n = 2) [2F20,;VieVip + 8(F + 2)], (4.34)
where ¥ and Z are defined by (3.14).
Proof. For the first formula we have

(g, dp) = VipV;p = Fg'i8} (VopVip/F) + (dg, u)?
= ngj8;li/i + n(de, u)?
= n(dy, u)2 + divergence over W (M),

where
¥, =¥ —u;(do,u), W = Vip(dy,u).
For the relation (4.34) it suffices to add the formula (3.17) to (3.19). Then we obtain (4.34).0

Lemma 14. Ler (M, g;) be a conformal infinitesimal deformation (CID) of a compact
Finslerian manifold. For a generalized Einstein metric go satisfying the conditions of
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Lemma 12 (4.32), the second variational of 1(g,) at the point gy is defined by:

H
I"(go) = (n— 1)(n —2) f [(Aw - @, ¢>)
(n—1)

W(M)

n s .
LA R
Proof. For a CID we have

L =2pgij, t(u,u) =2,  trace(t) = 2ngp,
=20, ¥ =4in(n—2p,
®=1Lnn-2 [(n — 2)F 2VpVop + VigVip + T"V,-WW] :

By substituting these expressions in (4.28) and using the preceding lemmas we get the
formula (4.35). o

Theorem 5. On a certain compact Finslerian manifold there exists a generalized Einstein
metric for which the second variational of 1(g,) is positive.

Proof. In the following we suppose that the conditions (4.31) of Lemma 12 are satisfied,
and in addition the indicatrix of (M, go) is of Einstein type:

F2Q
(n—1)

Then F2Q forn # 3, is independent of v. In fact the third curvature tensor of the Finslerian
connection satisfies the Bianchi identy [1]

F2Q;; = hij  (hij = gij — wiu)). (4.36)

I k1) Vi Qijk[ =0, .37

where o denotes the sum of the terms obtained by permuting cyclically the indices m, k
and /. From it we deduce by contracting i with k on the one hand, and by multiplying the
relation so obtained by g/™ on the other hand, the formula:

VI (FQ’) - §VP(F20) + v 0 =0. (4.38)
By putting in (4.38) the expression of Q;; defined by (4.36), we get
(n -3V} (F?Q) =

Thus for n # 3, F2(Q is independent of the direction defined by v. Using the formula (4.33)
‘of Lemma 13, we find

hij V' oVig=(1 - l/n)V,qu'(p + vertical divergence over W(M) (4.39)

F 2'Q is independent of v, we have
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n

(n—1)

Now, we suppose that the second scalar curvature P = g'/ P;; of the Finslerian connection
is zero. Then we have

F2Qh;jVipVip = F2QV;pVigp + vertical divergence over W (M). (4.40)

P=—3VoQ=0.

Thus F2Q is constant. Now we know that F2Q < 0 [2]. For if F2Q > 0, then the CID is
trivial: in fact for a Finslerian manifold of minima fibration, we get by (3.20) and (4.34)

S -2 .
F? QiiVieVip + (L—)szl-%pj V* ¢/ = divergence over W(M).
(n+2)
M being compact, by integration on W(M) we conclude that F2Q; j VigVigp < 0. This
being so, we choose the torsion tensor in such a way that

F?Q _
(n—NDn-2)

¢ sufficiently small > 0. Let x(x) be the eigenvalue of A for the eigenfunction ¢ (Ap =
we). By Theorem 4, 1u(x) > H/(n — 1). Let ;1 be the minimum value of . on M, M being

connected and compact i, > H/(n — 1). Taking into account (4.35) and putting e = £
we have 1 — &y > H/(n — 1). Thus I”(gg) > 0. m]

—E&.

5. Einstein-Maxwell equations
5.1. A connection of directions associated to the pair (v, F)

Let (M, g) be an n-dimensional compact pseudo-Reimannian manifold. To the pseudo-
Riemannian connection w (V) is associated the lift of w on V(M). It defines a covariant
derivation, denoted V, in the vector bundle p‘1 T(M) - V(M). We denote also by W (M)
the unitary tangent bundle on M. Let UG @ =1,...,n)bealocal map of M and F;; be
a skew-symmetric tensor on M. To the pair (w, F) is associated a connection of directions,
noted 7, locally represented on p~!(U) with local coordinates (x‘, v’) by

n =o' 48 det = Gy (x vy dx¥, (5.1
where

£ = 3K (' FF 4w F + iR ), (5.2)

oy = ¥jy dx*, b= gjk — ujuk, llel) = 1. (5.3)

The (yj?k) are the coefficients of the pseudo-Riemannian connection associated to the metric
tensor g;; and K is a constant. Let us put

g =Eu=vE, =K (FFki + “kFoi) . G4)
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Elop =& jv/v* = KFF}'v/ = KFFj = 2¢', (5.5)
whence by vertical derivation

SE =G,  SE. =F, ;=0 (5.6)

where F? = gijvivj.

We will denote also by D the covariant derivation associated to &, D is without torsion
and admits, with respect to coframe (dx, Dv) two curvature tensors, which will be denoted,
by abuse of notation, by H and G and are written as

H ijkl = (8"Gijl - GijlsGs") - (&Giﬂc ~ GG’y )

+GirkGrjl - GirlGrjk (G’/ = eri’.j) ,

Gy = §KF ™ [kl + bk + bk ;| F, 1, G.7)
Hj = (&'Gijl - Gijl:Gsl) ~8G';; + GGy - GGy,

and we have
G’y =0. (5.8)

From the identity (2.63) relative to the connection of directions D [3], it follows in virtue
of (5.8), by contracting i and k, and by multiplying by g// the relation thus obtained:

SnH = D; (8 Gt ) — Dig/ Gy (5.9)
Now Vg = 0, we have
Digh =y K (W F* + Wu' F) +u*F 7 +ulF¥). (5.10)

Taking into account (5.7) and (5.10), the last term of the right-hand side of (5.9) is zero.
Let us put

g'*G = §(n + DKY',, Y =F W F,. (5.11)
Now
DY, = VY, — 8ty &5 — Vg .. (5.12)

By a straightforward calculation, we see that the sum of the last two terms of the right-hand
side of (5.12) is zero. Thus (5.9) gives (K # 0):

ViF,! = —pjum + K 1F8s H, (5.13)

2
n+1)

where we have put

WViF'=—p. (5.14)
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5.2. Deformations

We consider now a deformation of the pseudo-Riemannian structure, i.e. a one-parameter
family ¢+ € [—e, ¢] of the pseudo-Riemannian metric, leaving fixed the skew-symmetric
tensor F;;. The derivative with respect to ¢ of the curvature tensor H of the connection of
directions D is defined by (2.42). Thus it follows by contracting i and %, and taking into
account (5.8):

Hjll = DiG/ijl - DIGH,'.' - GijrlG,ri’ (5.15)
whence
H'(u,u) = Hjuu' = F72 (21),-(;"' — DoG" ,.) , (5.16)

where Dy = v" D,. We will prove a lemma analogous to Lemma 3.

Lemma 15. Let (M, g;) be a deformation of a pseudo-Riemannian manifold, n; the con-
nection of directions associated to the pair (w;, F) and A(x) a differentiable function on
M, then we have the formula

A)H[u'ul = W (F,A)t (u,u) + divergence over W(M), (5.17)
where
W(F,0) =10 +2)F 20V — 3VIViA + L(n + DKFIF{ Vi
—(n+2ALK2 [(n + DF 2y Fy + F,F, "]
+1(n + DAKU'V;F, (5.18)

Proof. By multiplying the two sides of (5.16) by A(x), we will calculate each term of the
right-hand side, putting in factor the term ¢ ju'’ u’ we have

AF2DoG, =, (W' G* F2) - YAG" F2 - 20KE*8;G" F 2. (5.19)
Now the last term of the right-hand side is a divergence. For

—2AF"%582G", = —2Fg**8? (AF‘3G’i ,.sk) = divergence over W(M).  (5.20)
On the other hand, by (2.25) we have in the pseudo-Riemannian case

G =y = 3%, 52D
Thus

—ﬁoAG"',-F_z = —%eokeoti,-
= 3 F~20oVoAr'; + divergence over W(M). (5.22)
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Let us put

f=31F2%%n. (5.23)
S being differentiable, homogeneous of degree zero in v, we have by (2.18)

f - trace(?) = (nf + %F2g"fa,.'5;f) t(u, u) + divergence over W(M). (5.24)
Taking into account (5.23), the first term of the right-hand side of (5.24) is written as

nf + §F2g"838; f = }ViVia. (5.25)
Thus

f - trace(t) = %ViV,-At (u, u) + divergence over W(M). (5.26)
In virtue of (5.22), (5.26) and (5.20), the formula (5.19) is written as

—AF~2 DoG’i,. = —%V‘ V;At(u,u) + divergence over W(M). (527
We now calculate the term

2AF72D;G" =2V,(AG"F~%) —2V,AF~2G" — 208:G" 876 F 2. (5.28)
Now

26" =2y + 26" 2yt = yip), (5.29)
where

2y" = Vot'y — 5V tgo. (5.30)

And F;; supposed independent of ¢, deriving 2t defined by (5.5), with respect to ¢, we
obtain

26" = E't(u,u) — 2 E™, (5.31)
where t = g’. Thus taking into account (5.29) and (5.30), we have
— 2 ViAG"F~2
= _ViA (%t"o — %v"tm) F2 4 2™ VA, — EVAF 2t (u, 1)
=% [v,-xt"or2] + 197 [Viat(u, )] + 2F g™ s} [ro,-v" A F—3]
- [%v‘ Vik+ £ v,-AF-2] £ u) + Vo¥iarigF 2. (5.32)
’I?he ﬁrst_ three terms of the right-hand side are divergences. For the last term we have
t'y = g'tjo = }8'8?100 and obtain easily
F 2 90ia = 4 [(n +2)VoVorF~2 — Vi v,-x] £ (u, u)
+divergence over W(M). (5.33)

Thus (5.32) can be written as



H. Akbar-Zadeh / Journal of Geometry and Physics 17 (1995) 342-380 375
VG F 2= [%(n + 20 VoAF~2 — ViVA — g"v,-xF'2] £ (u, )
+divergence over W(M). (5.34)
Let us remark that
G =y, +£",. (5.35)

We have to calculate now the last term of the right-hand side of (5.28): —2y G" £, F 2.
This splits into two terms respectively —2Ay’ios§’,. F~2and —ZAf’isssiF ~2. The latter can
be written, taking into account (5.6) and of £",v, = —§;:

—~ 2 A" S F2
- —ZAflisfimgmsF_z = _2F8; [A.s/isim F—3] gms + GAslisiF—“
= (n+2)A [t(u, wEE — 2, jg"sf] F~ + divergence over W(M), (5.36)

where we have put g™’&;,, = £°;. On the other hand ¢;; = &7¢; and §, = 0, we have
-2 (n+2AE'8 F4
= —2(n +2)Fg'*s? [AF‘Sto € sk] +2(n + DAt 6T F
=2(n+ 2)At0j§j,-£;"'F_4 + divergence over W(M). (5.37)
The last term of the right-hand side can be written as
2(n +2)hag;E £ F
= (n + 2)A8] too & F~*
=(n+2)g’*s; [Mmg,-ks‘] F™ — (n+ DAF 10t &',
= divergence — (n + 24 [(n + HF ¢’ + F2¢ j] £, u). (5.38)
In virtue of (5.38) and (5.37) the relation (5.36) is written as
~2ME NPT = A+ 2) [+ F T + P | w)
+divergence over W (M). (5.39)
We have now to calculate the expression —21y’ iOsssi F~%
2" =y, 8;}//[ — y/ioj.
We have
~2Ay"0 85 F 7 = —2F 28} Ay bim)

=—2Fg""8;(\y" EimF ) + 6Ay" & F
=82 +2(n+ 2 My & F 4, (5.40)

where we have put

Zon =20V EimF 3, Zp=Zm — um(Z,u).
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On the other hand

2n + DAY EF ™ = (n + DA [ Vot — § Fro0 | &7~
=55 - 8(ou) + 3(n + 2)Vi (A" F e (u,u)
—(n + 2F 08t (5.41)

where we have put
o=+ F T, 8 =5+ 2t F
Finally, the last term of the right-hand side can be written as
—3(n + D F*F0(6g" 87100 = — 4 (n + D Fg85 [ To(h6idiooF |
+1(n +2)V; (&) F 2t (u, u).
Let us put
M; = J(n +2)Vo(A&) F 2t (u, u).
The relation (5.40) can be written as
—24y" 0 ESF T2 =82 485 — 8(ou) + M + (n + )V AENVF 2t (u u).  (5.42)

On adding the relation (5.28) and (5.27) and taking into account (5.34), (5.39) and (5.42), we
find the expression ¥ (F, A) defined in the lemma. The Ricci tensor Hj; defined in Section
5.1 is symmetric, for

Giji = yiji = d;Log/s, (8 = det (gij)) ’ Hjy = %5;51:”(”’ v). o
In a manner analogous to Lemma 3 of Section 2.5, we have the following lemma.
Lemma 16. Let (M, g,) be a deformation of a pseudo-Riemannian manifold, we have
g/*H) = nH{;u'u) + L Fgi*s? [Fs,: (H(,O/F2)]
= nHi’ju'uj + divergence over W(M).

The first term of the right-hand side is defined after Lemma 15, on putting A = 1.

5.3. Variationals of some scalar curvatures

Let (M, g;) be a deformation of a compact pseudo-Riemannian manifold and 7; the
connection of directions associated to (g;, F) and Hj; corresponding Ricci tensor. Let A(x)
be a differentiable function on M. We define on W (M) the action functional as

H, = H, — Mx)Hu,u), H, =g"Hj;. (5.43)
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We denote as in Section 2.6 by R%(g,) the subfamily of the pseudo-Riemannian metrics
such that the volume of the corresponding unitary tangent bundle is equal to one for all
t € [—¢,€]. We look for a metric g, € Ro(g,) such that the integral J(g;) is an extremum:

J(g) = f A, (5.44)
W(M)

fn,=1. (5.45)

W(M)

By a procedure analogous to one of Section 2.6, using the previous two lemmas, the deriva-
tive of J(g;) with respect to ¢ is defined by

J'(g) = —{C,1), (5.46)
where
Cjk = Hjp — A(x)ujur H(u,u) — W (F,n — Nujur — H; (gjk - %nujuk) , (5.47)

and ¢ = Lik-

Now the volume of W (M) is constant so that on deriving (5.45) it follows by (2.14) that
the tensor D defined by (2.74) is globally orthogonal to ;. Thus for g € Ro(g,),t =0to
give the extremum of the integral, it is necessary and sufficient that there exists a constant
b such that we have at ¢t = O:

Hjj — AX)ujur H(@u,u) — W (F,n — Nujur — H (gjk - %nujuk)
= b (gjk — Jnujui). (5.48)

where ¥ is defined by (5.18). Multiplying the two sides of (5.48) by v/ and v* successively
we get

H(u,u) = AH @) = W(Fon =3 = A (1= 4n) =b (1= §n). (5.49)
On eliminating between (5.48) and (5.49) the expression ¥ (F,n — A) we have

Hjx — H(u, w)ujup — fl(gjk —ujur) = b(gjx — ujur). (5.50)
Maultiplying the two sides by v/:

F?Hox = Hoovk. (5.51)

On the other hand, since v" 8; H,; = 0, onderiving with respect to (v/) the previous relation,
we find

Hjy = H(u,u)gjx. (5.52)
Deriving once more vertically (5.52) we have

8o Hjx = &5 H(u,u)gji,
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whence, on multiplying the two sides by v/ and v*:
0=/ v"&,‘nij = F28,°”H(u, u).

Thus, H(u,u) is independent of the direction. (M, g) is therefore a GEM. At the point
t =0, H = nH(u,u),and H reduces to (n — ) H (u, u). On multiplying (5.50) by g/* we
then have

(1 —n+AH(@u,u)=0>. (5.53)
Eliminating b between (5.53) and (5.49), we get att = 0:

(%n - A) H(u,u) = W(F,n—\). (5.54)
We have thus proved the following theorem.

Theorem 6. The pseudo-Riemannian metric go € RO(g,) at the critical point of the integral
J(g) defines a GEM.

For a GEM the scalar curvature H is independent of the direction, (5.13) reduces to
Vi F = /. (5.55)
In a particular case, if A = %n and K = 0, then from (5.53) and (5.54), we have ¥ = 0,
C=H@u,u)=>b/(1 — %n), H;; = R;j = Cg;;. Thus (M, g) is an Einstein manifold.

5.4. Einstein-Maxwell equations

Let M be a differentiable manifold of dimension 4, g the metric tensor of normal hyper-
bolic type [13], F the closed 2-form of electromagnetism, 1) the density of proper electric
charge, u the unitary velocity vector time like. The relation (5.55) represents the equation of
Maxwell-Lorentz [13]. We have shown that it is derived from the Bianchi identity relative
to the connection of directions associated to the pair (w, F) independently from the constant
introduced in this connection. On the other hand by (5.7) we obtain the relation between
the curvature tensors of & and w:

H',, = Rijkl + Ve -V, + Gijksfsl — G +E 3 — ' E - (5.56)
On contracting i with k and on using the relations (5.6), (5.8) we have

Hj =R+ it — G, &5 — €. (5.57)
After simplification let it be

Hj = Rj + %K (hjzu’ViF,i + u[V,'F}i +u; Vi F i)

+3K? (g1 Fir F" +2F; F/ ). (5.58)
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In virtue of the Maxwell—Lorentz equation [13] and on putting ;11 = K p1, where K is
constant, we have by changing the indices

Hij = R;; — pI%KlK(gij +uiuj) + %Kz (gijFrsF” + 2Fier') . (5.59)
Now Maxwell tensor t;; is of the form [13]

tij = 38ij Frs ™" — Fir F}'. (5.60)
Expressing 2F,~,Fj " as a function of 7;; and on putting it in (5.59), we have:

Hij = Rij — p13 K1K (8ij + uinj) + 3K Frs ™ — K15, (5.61)
From (5.59) we obtain

g/Hij=H=R+3K*F,,F"* —3p KiK. (5.62)
Taking into account the relation, we have

Hij — }Hgij = Rij — $(R+ M)gi; — xTyj, (5.63)
where we have put

K\ 2Ky K?
Tij=‘t,'j+P1—K—u,'uj, R+2A=_XT’ X—_—T’

A and y are constants. We know that [13] in the case of pure matter electromagnetic field,
Einstein equation is of the form

R;j —%(R—i-k)gij = xTij. (5.64)
From (5.63) it follows
H,'j = %Hg,'j. (5.65)

Thus (M, g) is a generalized Einstein manifold.
Let us now suppose that the equation of Maxwell (5.55) reduces to (i1 = 0):

ViFY =0. (5.66)
Then (5.58) is written in this case as

Hjk = Rjx + 3 K* (8ijirFi' + 2F,-,F,{) .
On making the expression of the tensor tj; intervene we get

Hj, — ;I;ngk = Rjx — :lngjk — XTjk-

In the case of a pure electromagnetic field the right-hand side of this equation vanishes.
(M, g) is again a generalized Einstein manifold.
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