
ELSEVIER Journal of Geometry and Physics 17 (1995) 342-380 

JOURNAL OF 

GEOMETRY,~D 
PHYSICS 

Generalized Einstein manifolds 

H. Akbar-Zadeh 
36, rue Miollis, 75015 Paris, France 

Received 7 June 1994 

Abstract 

A Finslerian manifold is called a generalized Einstein manifold (GEM) if the Ricci directional 
curvature R(u, u) is independent of the direction. Let F°(M, gt) be a deformation of a compact 
n-dimensional Finslerian manifold preserving the volume of the unitary fibre bundle W(M).  We 
prove that the critical points go ~ F°(gt)  of the integral l (g t )  on W(M)  of the Finslerian scalar 
curvature (and certain functions of the scalar curvature) define a GEM. We give an estimate of 
the eigenvalues of Laplacian A defined on W ( M )  operating on the functions coming from the 
base when (M, g) is of minima fibration with a constant scalar curvature/-) admitting a conformal 
infinitesimal deformation (CID). We obtain ~. > iCl/(n - 1) (Af  = )~f). I fM is simply connected 
and ~ = f l / ( n  - 1), then (M, g) is Riemannian and is isometric to an n-sphere. We first calculate, 
in the general case, the formula of the second variationals of the integral 1 (gt) for g = go, then for a 
CID we show that for certain Finslerian manifolds, l"(go) > O. Applications to the gravitation and 
electromagnetism in general relativity are given. We prove that the spaces characterizing Einstein- 
Maxwell equations are GEMs. 

Keywords: Generalized Einstein manifolds; Finsler geometry 
1991 MSC: 53B40, 53C25, 83C05, 831)05 

Contents 

1. Introduction 
2. Generalized Einstein manifolds 
3. Eigenvalues of the Laplacian on the unitary fibre bundle 
4. Second variationals of the integral 1 (gt) 
5. Einstein-Maxwell equations 
References 

343 
344 
360 
365 
371 
380 

0393-0440/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0393-0440(94)00052-2 



H. Akbar-Zadeh /Journal of Geometry and Physics 17 (1995) 342-380 

1. Introduction 

343 

Much important research has been made to find the right geometrization of the equations 
of electromagnetism and gravitation in general relativity. In 1915 Hilbert [9] announced 
the two axioms which permit one to deduce the equations of Einstein with the second 
member thanks to a variational principle (Misner-Thom-Wheeler ,  pp. 431-434)  [ 15]. 
This method of deformation is applied to different and heterogeneous action function- 

als defined on the space-time M4 [6,15]. An analogous procedure of the standard model 
of Kaluza [10], Klein I l l ]  (M4 x T), applied to the total scalar curvature of a pseudo-. 

Riemannian metric of dimension five determines the equations of Einstein-Maxwell in the 

absence of matter and electric charge, the case of pure electromagnetic field (Lichnerowicz, 
pp. 197-198) [ 13]. The action functional is as in the preceding case, an element of the ring 

of functions defined on space-time M4. When the stress-energy tensor T represents the 
case of pure matter electromagnetic field (T = pu ® u + r),  the solutions proposed by 
[6,13] do not seem satisfactory. That is why we pose the problem in the following form: 

To find a geometric space and an action function depending on the curvature of this space, 

such that the critical point of deformed total action function is a solution of the equations 
of Einstein-Maxwell. 

A solution to this problem is the object of this work. In order to know the difference between 
our viewpoint, and one usually proposed, we will observe that: 
( 1 ) The geometric space in question is the unitary tangent bundle on the space-time M4. 

(2) The action functional is constructed by means of a certain scalar curvature of a con- 
nection of directions. It is a priori an element of the ring of functions defined on the 

unitary tangent bundle W (M4). 
(3) The equations of Maxwell with source (8 F = ~t 1 u) are obtained by means of Bianchi 

identities relative to the connection of directions via the equations of Einstein. 
In order that the spaces which characterizes the equations of Einstein with the second 

member defined above, are contained in a bigger class of Finsler manifold which we call 
here the generalized Einstein manifolds (GEMs). 

We are now going to give an overview of our work. After a brief recall of Finslerian 
geometry, we deform the Finslerian metric and calculate the first variational of the volume 

element of the unitary Finslerian fibre bundle W (M). In the compact case, we prove a lemma 
which permits us to find the variational of the volume W(M).  In Sections 2.3 and 2.4, we 
calculate the variationals of the Finslerian connection and the corresponding curvature 
tensors. To the Ricci tensor of the Finslerian connection we associate a function with scalar 

values H(u, u) on W(M), which we call the directional Ricci curvature. This function is 
the same for the connections of Finsler and Berwald and is homogeneous of degree zero, 
and plays an important role in what follows (it is the analogue in the Riemannian case of 
the first member of the Poisson equation in the geometric formulation of the Newtonian 
gravitation ([15] p.300)). We deduce from it by vertical derivation a symmetric tensor of 
the second order Hjk which plays the same role as the Ricci tensor of the Riemannian 
geometry. Let (M, gt) be a deformation of the Finslerian metric and )~(x) a differentiable 
function on M. The lemma of Section 2.5 gives us the variational of k(x)H(u ,  u). Then we 
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calculate the expression of the trace of variationals of Hjk as well as of the Ricci tensor of 
the Berwald connection Hjk. In Section 2.6 we suppose that M is compact, and we denote 
by F°(gt) a deformation of the Finslerian metric which preserves the volume of W(M).  

By means of the Ricci curvature Hjk we define on W ( M )  the scalar-valued function/~t = 
trace (Hi) -~. (x)/~t (u, u) depending on t and the corresponding integral I (gt). We prove that 
go E F 0 (gt) is a critical point of I (gt) if and only if Hjk is proportional to the metric tensor 

ffljk = C(z)gjk (z ~ W(M))  (t = 0,g = go)- We conclude from it that C is a function 
independent on the direction. Such a manifold will be called a GEM (Theorem 1). In Section 

2.7 we study the particular cases when Z is constant. In order to simplify the variational 
calculus of the Finslerian scalar curvature, we choose a deformation which leaves invariant 
the torsion tensor and we then calculate the trace of the variational of Finslerian Ricci 

tensor. We prove, as before, that the critical points of the total Finslerian scalar curvature 
define again a GEM (Theorem 2). In Section 3.1, we determine the conditions in order 
that the Finslerian manifold be a totally geodesic fibration (and minima) (Theorem 3). In 

the compact case we give an estimate of the eigenvalues of the Laplacian A defined on 

W ( M )  operating on the functions coming from the base M. When (M, g) of constant scalar 
curvature H = trace(/~tij), has a minimal fibration and admits a conformal infinitesimal 

deformation (CID). We prove the inequality ~. _> H/(n  - l) ( A f  = ~.f). Besides, if M is 
simply connected and there is equality, then (M, g) is isometric to an n-sphere (Theorem 4). 
This theorem generalizes an analogous result in the Riemannian case [14], the method of 

proof used here being entirely different. In Section 4.1 we obtain the formula of the second 
variationals of the integral l (gt)  in the case where (M, go) is a GEM and ~. = ½n. In 
Section 4.2 we study the case of a CID and prove that for certain generalized Einstein 
metrics the second variational is positive (Theorem 5). The rest of the work is devoted 
to the application of the preceding method to the solution of the problem posed at the 

beginning. Let (M, g) be a compact pseudo-Riemannian. We denote by co the lifting of the 

pseudo-Riemannian connection on the tangent bundle. Let F be a skew-symmetric 2-tensor. 
To the pair (co, F)  we associate a connection of directions, without torsion, denoted zr on 
the unitary bundle W(M),  admitting two curvature tensors H and G. We consider then 
a deformation of the metric g leaving unchanged the 2-tensor F. After having proved a 
lemma analogous to Lemma 3 of Section 2.5. We take up the variational problem similar to 

Section 2.6 and characterize in this case the GEM (Theorem 6). In Section 5.4 we proceed 
to the identification of the elements introduced with the elements coming from gravitation 
and electromagnetism. 

2. Generalized Einstein manifolds 

2.0. Preliminaries 

Let M be a connected, paracompact, n-dimensional manifold o fC °° class. Let T M  ~ M 
be the tangent bundle and p : V(M)  -+ M the tangent bundle of non-zero vectors of TM.  
Let p - I T M  ~ V(M)  be the fibre bundle induced from T M  by p. A point of V(M)  will 
be denoted by z = (x, v) where x = pz ~ M and v ~ Tpz(M) .  We denote by T V ( M )  the 
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tangent bundle to V(M).  Let (x i) (i = 1 . . . . .  n) be a local chart of  the domain U C M 

and (x i, v i) the induced local chart on p - l ( U )  where: v = lYi(r~/~X i) E. Tpz(M).  We 

suppose that M is endowed with a Finslerian metric. Such a metric is defined by the data 

of a function F on T M  satisfying the following conditions: 

(1) F > 0  and C ° ° o n V ( M ) ,  

(2) F(x ,Lv)  = ~F(x,  v), Z E I~ +, 

1 02F  2 
(3) gij (x, v) ---- - 

2 01)i013 j 

is positive definite. It is called pseudo-Finslerian if gij defines a non-degenerate quadratic 

form (de t (g i j )  • 0). It is clear that gij is a homogeneous tensor of  degree zero in v and we 

have 

gij(z)viv j = gz(v, v) = F 2, (2.1) 

where gz ( , )  denotes the local scalar product in z E V (M). Henceforward V will denote the 

Finslerian connection associated to g [ 1 ]. It defines a covariant derivative of  the fibre bundle 

p - 1 T M  --~ V(M).  We call the indicatrix in x ~ M, the hypersurface Sx in Tx(M) defined 

by the equation F(x, v) = 1. We denote by W(M)  = Ux~MSx the fibre bundle of  unitary 

tangent vectors to M. Let u : M --~ W(M)  be the unitary vector fields and o9 = Eui dx i 

the corresponding 1-form. We denote by (dog) n-I  the (n - l)th exterior power of  dog. The 

volume element of  the fibre bundle W(M) will be represented by a (2n - 1)-form on 

W(M) Ill: 

( - 1 )  N n ( n -  1) 
r / - -  - - ~ ,  ~ = o g A ( d o g )  n - l ,  N - -  (2.2) 

(n - 1)! 2 

We suppose M compact, as in the theory of  the harmonic forms, we introduce on the 

differential forms defined on W(M),  the codifferential operator 8, adjoint to d, in global 

scalar product defined on W(M).  If  rrl = ai(z) dx i, z E W(M), is a horizontal 1-form on 

W(M),  we have proved in [1] that 

8rg 1 = --(VJ aj -- aj VoT J), (2.3) 

where TJ is the vector trace of  the torsion tensor. Similarly, rr2 = bjVuJ (bjvJ = 0) is a 

vertical 1-form on W(M),  we have [2] 

3 r r 2 = - F ( V ; b  j + b J T j ) = - F g j i 3 ; b i  ( 3 ; = 3 / S v J ) .  (2.4) 

Henceforward, we denote by (Vk, V~) the components of  the Finslerian covariant derivative 

with respect to coframe (dx k, Vv k) and frequently use the formulas (2.3) and (2.4). 

2.1. Variationals of the volume element of  the unitary fibre bundle 

A deformation of  a Finslerian metric will mean a one-parameter family of  this met- 

tic. Supposing the deformation of  the metric, o9 as well as 17 depend on the parameter 

t ~ I - e ,  el, e sufficiently small > 0 we will calculate the derivative of  I/with respect to t. 
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First of  all we have 

~Ft dx  i, tot 3 F '  dx i (~i" = 07), (2.5) 
tO t = t~U----- ~ = ~13i 

where the notation t denotes the derivative with respect to t. This derivative commutes with 

the differentiation d, so from (2.2) we have 

@' = w' /x  (dw) n- I  + (n - l)w A (dw) n-2/x dw'. (2.6) 

By a simple calculation from (2.5), we obtain 

t ~ F f / ~ v i  t r : -  F - I  ---- g i r  u - -  ( F ' / F ) u i  ( u  v),  (2.7) 

tO' : g i r  r d x i  _ ( F ' / F ) w .  (2.8) 

Let us denote by 0 = Vv, and 13 = Vu, we have 

flJ = F - l ( S  j -- uJuk)O k (uj/3 j = 0). (2.9) 

From (2.5) we get by differentiation 

02F f ~2FI 
= dx j m dx i + ' m  dx i, (2.10) dw' t~13iOxJ F ~ / 3 1  

where (O/OxJ, ~/6vJ) denotes the pfaflian derivatives with respect to (dxJ, 0)),  define at 

z e V (M) a basis of  T z V (M).  The first term of  the right-hand side of  (2.10) is a 2-form in 

dx, by putting it in (2.6), it cancels the second term. The coefficients of  the second term are 

given by 

~2Fr F I 3F  r 
- - - -  P - -  - - g  j r  u Ui - -  g i r  u Uj a t- F u ~ u j .  F s v i S v j  g i j  - ~ g i j  , r t r - -  " • (2.11)  

Taking account of  (2.8), (2.10) and (2.11), the derivative of  • can be written as 

• ' = --n ( F ' / F )  • q- g t i r  u r  dx i A (do)) n-!  

+ (n  - 1)o9 A (dw) n-2 A grij/3J A dx i, (2.12) 

F ' / F  = l g ' i juiuJ.  

where 

(2.13) 

To evaluate the last two terms of  the right-hand side of  (2.12) we take an orthonormal frame 

( e i )  (i = 1 . . . . .  n) at x E M such that, u = en, we have u n = 1,u ~ = O, f l n =  O, flct = 
Wan (or = 1 . . . . .  n - 1) where eoij is the Finslerian connection. Thus the last term of  the 
right-hand side of  (2.12) is giagl ia~ and the last but one term is equal to ging' in~,  thUS 
their sum is g i j  g'ij ¢I9. Dividing the sides of  (2.12) by (n - 1)! we get the following lemma. 

L e m m a  1. The first variational of  the volume element of  the Finslerian unitary fibre bundle 
is defined by 

rf = (gij  - l n u i u J )  g'ijrl. (2.14) 
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2.2. Compact case 

Lemma 2. Let (M, g) be a compact Finslerian manifold and f a differentiable function 
homogeneous of  degree zero in v on W(M) and t = g'. Then we have the formula 

f f [ I ~'2°ij'~'x'f] f . t r a c e ( t ) . r / =  n f  + ~ _  6 vi~,jJj t(u,u)rl .  (2.151 

W(M) W(M) 

Proof. Let fbeadi f ferent iab lefunct ionon W and tij = g~ij. Considerthe field of covectors 
defined by its components 

Yj = f . tiju i. 

To Y we associate the vertical 1-form on W(M) defined by 

Y = r - u . g ( r , u ) ,  ~ ' o=vr y r =O,  (2.16) 

where 0 denotes the multiplication contracted by v. Thanks to the homogeneity of  the torsion 

tensor we have 

FgijS:~'j = gi jS: f toj  + f . t r a c e ( t ) - n f t i j u i u  j (8: = 8 / 8 v i ) .  (2.17) 

However, 

gijS: f to  j J FgijS: (8~ f t o o F - l )  _ , _ij. o . . . .  = ~g lO00j o i J.  

Substituting this expression in (2.17) we get 

1 ¢.2oij,~.X.¢" ~ FgijS:~j f "  trace(t) = ( n f  + ~-- ~ vi vj j ]  tooF -2 + 

_ I  Fgij 8 ; ( ' :  f t o o F - ' )  . (2.18) 

By (2.4), the last two terms of  the right-hand side of  this equation are divergences over 

W(M) [2]. Since M is compact we obtain the lemma by integration over W(M). If  f = ~p 

is a function on M we have 

f ~o .trace(t) . o = n f ~ot(u,u)o, (2.19) 
W(M) W(M) 

where t(u,u) = tijuiu j. Now vol W = fw(M) )7 and by putting ~0 = 1 in (2.19) we get 

( v o l W ) ' =  f [ t race( t ) -½nt (u ,u)]~  

W(M) 

f ,,f 1 trace(t) • )7 = t(u, u)o. [] (2.20) 

W(M) w ( g )  
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2.3. Variationals o f  a Finslerian connection 

Let U(x i) C M be a local chart of M a n d  p- l (U) (x i ,  13 i ) the induced local coordinates 

on W(M).  The one-parameter family of the Finslerian connection is represented by the 
matrix [1] 

i oaj Ip-ltv)= F*~k(X, v, t) dx k + Tijk(x, v, t )Vv  k, (2.21) 

where V is the Finslerian covariant derivative associated to the one-parameter family of the 
Finslerian metric. We will calculate first the derivative with respect to t, the coefficients F 
of the Finslerian connection. Now these coefficients are defined by [1] 

/-,,jk = ½gim (Skgmj + ~jgmk--Smgkj) 

-- T~ im F*s --(Tijsr*~ok + r"ksr*~oj kjsg Ore) (2.22) 
and 

• ~;ro. ( 8 8 o = 8  ) 
Ttjk -'~ ~g Okgrj ¢~k : 8X-" ~, k ~ • 

Now from (2.22), by deriving with respect to t, we get 

rt, i jk = ½gim (Vktmj q- Vjtmk -- Vmtjk) 

-- TJ • imGts - - (T~sG'Sk -t- T"ksG'Sj kjsg m) , 

(2.23) 

(2.24) 

= ' and G~j = F'*~0j. We multiply the two sides of (2.24) by v J, taking note of where tij gij 
the homogeneity of Finslerian torsion tensor 

]-"*iOk = G'*ik = ½ (Vktio -~- VOtik - Vitok) -- 2TiksG 's. (2.25) 

We multiply this relationship by vk: 

F'*io0 : 2G 'i = v0ti0 - ½ Vi too. (2.26) 

Substituting (2.25) and (2.26) in (2.24) we get 

• . i t*r Aljk  : FP*ijk -t- T jr F Ok 

= ½(Vk t j  -I- v j t i k -  Vitkj) --½TZkr (vjtro -~- v 0 t r j  - -  vrt jo)  

q-½Tkjr(Vitro+Votir--vrtio)-FQ~rk(VOtrO--½Vrto0), ( 2 . 2 7 )  

where Qijr k is the third tensor of curvature and of the Finslerian connection defined by 

Qtjr k TIksT jr  i s  = - T rs T jk" (2.28) 

If we derive the two sides of (2.21) with respect to t we get 

to'ij = AijkdX k -t- T'ijk VV k, (2.29) 

where A is defined by (2.27). 
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2.4. Variationals of Finslerian curvature tensors 

The Finslerian curvature is a 2-form on the unitary fibre bundle W(M) defined by 

~)i j  : dogij + O)ir A o)rj. (2.30) 

The derivative with respect to t, commuting with the differentiation d is given by 

~ , t j  ---- d J i j  -t- (-oti r A o)rj -q- O)tr A o f r j .  (2.31) 

In virtue of  (2.29),we have 

ti " V  .r d c j i j  : d A i j l  A dx  I -t- dT ' i j l  A W131 a t- T jr a v . ( 2 . 3 2 )  

Now 

ti t r i r /i r 
R jkl = V k A i j l  -- V I A i j k  -]- P jlr A Ok -- P jkr A Ol -I- T jr R Okl, 

• " r i r " ¢ i  r 
Pt' jkl  : - - V ~ A t j k  -- A i j r T  kl -]- Q jlr A Ok -I- VkTf t j l  -- T j r V O T  kl , 

ti • ti • ti Q jkt = V k T  j ! - V  tT jk" 

V V r : d l )  r "~- 1)h Ogrh . (2.33) 

From which, by taking into account (2.30) 

d V v  r ---- V v  h A O)rh "~- ~"2ro (~'2ro = vml2r  ). (2.34) 

Putting these relationships in (2.32) we have 

• t i  r t i  r dwt~j = d A i j l  A dx  I - t -dTt~l  A V v  I h- T jrff~ 0 - T jr O) h A V V  h. 

Thus (2.31) can be written as 

ff2tij i dx  k • _ i r ti r (2.35) • = V A  jk A + V T t t j k  A V v  k A jr  T kl dxk  A Vl)  l --}- T jr~"2 O" 

Now we are going to calculate the derivative of  the curvature 2-form I2, as a function of  

the derivative of  the curvature components. This 2-form can be written [ 1 ] 

• I i dx t ' dx k C2'j  = ~ R  jkl A dx  I + e ' j k l  A Vi)  1 + ½ Q i j k l V l ) k  A VI) 1, ( 2 . 3 6 )  

where the R, P and Q are the curvature tensors of  the Finslerian connection. The derivative 

with respect to t of  the two sides of  (2.36) is 

½ ( R ' i j , l - ~ -  p i j k r A r O l -  p i j l rArOk ) dx  k A dx '  C2'ij 

(p'ijk I + QijrlArok ) dx k A Vv I + ½Q'ijklVVk A Vv t. (2.37) + 

By identifying the coefficients of  the terms in dx A dx, dx A Vv and Vv A Vv of  the two 

sides of  (2.35) and (2.37) we get successively: 

(2.38) 

(2.39) 

(2.40) 
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The formulas (2.38)-(2.40) give us the variationals of the curvature tensors of a Finslerian 
connection. Finally, let 2tij be the one-parameter family of the Berwald connection 1-form 

associated to g, defined on p - l  (U) by [3] 

7~ij ~--- G i j k  (X, v, t ) dx k. (2.41) 

Denoting by H and G the two curvature tensors of this connection and applying the above 

method we find 

Htijk I = DkGti j l  -- DIGti jk  + Gi jrk  Gtr I - GijrlGtrk, (2.42) 

where D is the covariant derivative in ~rij defined by (2.41). 

2.5. Variationals of some Finslerian scalar curvature tensors 

2.5.1. 
Let us recall that the curvature tensor R of the Finslerian connection is related to the 

tensor H of Berwald connection by [3] 

Rijkl  i " Vl VoTijk  Vk VoTi j l  = H jkl "Jr- Tljr Rrokl + 

i r _ VOT~rVOT~I ' + r O T  trVOT jk 

i r VkVoTj  V i V o T j  k Rjk = Hyk + T jr e Oik -~- 

+VOT~r VoTrj - VOTrVOT~k. (2.43) 

Let us denote by R i j  = R r irj and Hij = Hrirj the corresponding Ricci tensors, we have 

by (2.43) 

Rijl)io j = Hi jo iv  j = H(1), 1)). (2.44) 

L e m m a  3. Let (M, gt) be a deformation of a Finslerian manifold and let X(x) be a differ- 
entiable function on M, we have the formula 

k(x) H' (u, u) = divergence over W (M) + ~t(u,  u), (2.45) 

where: 

* = ½ [ ~ i ~  i - Yi~O Ti  - F2gi j~:  ( ~ r j / F ) ] ,  (2.46) 

(2.47) 

Yi = 2X(x)VoTi - ViX - TiVoX, (2.48) 
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Proof. The derivative of H(v,  v) with respect to t is obtained from (2.38) and (2.42) : 

Rijv¢ ivJ = n l j v i  v j :- 2Vi Gli - VoGt' i -t- 2V0/~G ti. (2.50) 

Let ~,(x) be a differentiable function on M. Let us calculate ~,(x)Ht(u, u). By (2.50), (2.26) 
and (2.27) we have 

~,(x)nt (u,u) 2 I V  i ~'ati \ ati "] ( ~,a: ~ 

Gti i V0~, 2G ti 
+ F-----T~ + ~ (2XVoT/ - Vi~.) 

= 8(tzv) - ~ t r  q- F-2Vot ioy i - ½r-2VitooYi + ½F-EVotiiVo X, 

(2.51) 

where ~ denotes the codifferential with respect to the volume element q ( 2 . 3 ) . / z  and tr are 
defined by 

Ix :-- X(x)G'ii F-E, tr i = 2~,(x)G'i F -2. (2.52) 

The first two terms of the fight-hand side of (2.51) are divergences over W(M).  We are 
going to calculate the last three terms: 

F-2Voti  oYi = V 0 (tioYi F - 2 )  --tioVOYi F-2 ,  

_- (,iiVo   _ 

"-]- ½tOO(~iyi -- ~ iVoT i )  F -2. 

Thus (2.51) can be written as 

~.(x)H'(u,u) = divergence over W(M)  + ½t(u,u) (V i y  i - YiVoT i) 

+ f t i i - tio VoYi F -2. (2.53) 

On the other hand, we have 

. . . .  , o o  t ~ f  = g'Jqtio, f = Fg 'Jq f + ~ f  - g'JtioS~f 

---- Fgij S~ }'i -Jr n~2  2 f -- tJo6~f,  (2.54) 

where It" is defined by (2.16) and f by (2.49). By putting (2.54) in (2.53) we see that the 
1 coefficient of F -  t 0  this relationship is the covector ~p defined by (2.47) 

"" ! ij • - - 1  F - l  g~Jtio~j = ~g t~itoo~jF 

l_ij,•oi \F-2tOOl~i ] , ..]_ ½ / (/4., u) . l~oF- I _ ½,(1), l ) )g i j~ ( F - l l [ t j ) .  
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Let us put 

Zj = ½t(u,u)~j, Zj = Zj - ujZo F- I .  

Then we have 

F- I  giJtiolPj = divergence over W(M) + ½nF-lt(u,  u)~Po 

-½giJt(v,v)d~ (F- l~oj ) .  

By taking into account (2.53)-(2.55), we obtain the lernrna. 

In particular: If ~. is constant, we have 

f = O, yj = 2~.Vo?), ~j  = -2XF-1VoVoTj.  

Thus the formula becomes 

~.H' (u,u) = divergence over W (M) + Xr • t(u, u), 

where 

r = (ViVo?) - VoTiVoT i) + gijS~(VoVol)). 
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(2.55) 

[] 

(2.56) 

(2.57) 

r is up to a sign, the sum of the codifferential of V0/) and of F - 1  VoVoT/. 

2.5.2. 
By means of the function H(v, v) = Huviv j we construct the tensor of second order 

defined by 

~6)SkH(V,V) = ½ + = (2.58) 

L e m m a  4. We have the formula 

gJk tCljk = hr .  t(u, u) + divergence over W(M). 

Proof By derivation we have 

8~,H'(v, u) " ' = 8kH (u,u)F 2 + 2VkH'(u,u). 

A second derivation gives us 

8;8~H'(v, v )=  FS; [F&~(H'(u, u))] + vjS~ [H'(u, u)] 
+2gjk H' (u, u) + 2VkS~ [ H' (u, u)] .  (2.59) 

Taking into account (2.58) and the homogeneity of the terms introduced with respect to v, 
by dividing by two, and by multiplying the two sides by g j k  we obtain 

• ~ l _ jkoe~e  . . t .  glkHyk = ~g oj ok rt tv, v) ---- nH'(u, u) + ½FgJkS~ [FS~(H'(u, u))] .  (2.60) 
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Now the term nHt(u, u) is defined by the formula (2.56) where ~. = n and the last term of 
the f ight-hand side is a d ivergence  (2.4).  [] 

Lemma 5. We have the formula 

gjk H; k --- gjk ffi;k + divergence over W (M). 

Proof. By deriving the two sides of (2.58) with respect to t we get 

gjk H; k ~_ gjk ffI;k __ ! . j k ,  r ~ .  L r ,  ~ v oj Hkr. 

(2.61) 

(2.62) 

N o w  the tensor H satisfies the identity o f  Bianchi  [3] : 

• i i 3mH jkl + DIG jkm - DkGijlm = O. (2.63) 

We contract i and k and multiply by v l, we obtain taking into account the homogeneity of 
tensor G 

r • (Gij im)  ( Gijim) V 8mHjr = - D o  = -DOGym Gjm = , 

whence 

1 jm r~e ..t ~ " t _t_,,jra£e{-2.. i'=ts "m ts 2g V Oml'ljr -½gym DoGjm ~ • ,,s ,-,ymv + gY GsmG j 

=--½gjmD 0 (G;m) + Fgjm¢~; (GsmGtS/F) 

= divergence over W(M). 

Substituting this expression in (2.62) we obtain the lemma. [] 

2.6. Generalized Einstein manifolds 

Let M be a compact Finslerian manifold and Fljk the symmetric tensor defined by (2.58). 

Let k be a differentiable function on M. We consider the scalar function on W(M)  defined 

by 

Let F(gt) be a I-parameter family of Finslerian metric. We denote by F°(gt) the subfamily 
of the metric such that for every t ~ [-e, t] the volume of the unitary fibre bundle corre- 
sponding to gt ~ F ° is equal to one. We look for gt ~ F°(gt) which makes the integral 
I (gt) extremum: 

/ l~tt h (2.65) l (gt ) = 

W(M) 

with 

f ot=l. 
W(M) 

(2.66) 
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We have successively: 

( ) '  ( ) ( ') u J = -- F t / F  u j = - t (u ,u)u  j tij = g i j  • 

Also 

(2.67) 

(2.68) 

( ) '  u~u k • ffljk = - H ( u , u ) t ( u , u ) .  

It is easy to see that the derivative o f  gjk with r e spec t  tO t is - t jk. T h u s  the first term of 

the right-hand side of (2.67) can be written as 

After Lemmas 3 and 4 we have 

(gjk  _ ),uJu k) tTijk = divergence over W(M)  + (nr - oh)t(u,  u), (2.70) 

where q~ and r are defined by (2.54) and (2.57). On the other hand, since the derivative of 

the volume element Ilt with respect to t is defined by (2.14) we have 

(Htllt)t= (tTlt)tilt + I~It [ t r a c e ( t ) -  ½nt(u ,u)] .  (2.71) 

Thus taking into account (2.69)-(2.71) the derivative of I (gt) can be written as 

l ' ( g t ) = - ( A , t ) = -  f aJkt jk . i l t ,  (2.72) 

W(M) 

where ( , )  denotes the global scalar product and A is defined by 

A jk = Ici j k -  ~.H(u,u)uJu k -  (nr - ~)uJu  k -  fit ( g j k _  ½nuJuk),  (2.73) 

where 

l?It = flt - ZHt (u, u). 

The hypothesis that the volume of W(M) is constant, yields after (2.20): 

(D, t) = 0, Djk = gjk _ ½nuJu k. (2.74) 

In order that (t = O) go ~ F°(gt) gives the extremum of I (gt) it is necessary and sufficient 

that there is a constant a such that at t = 0: 

= a ( g j k - - ½ n u j u , ) .  (2.75) 
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By multiplying the two sides by uJ and u k successively we get 

H ( u , u ) - ) . H ( u , u ) - ( n r - d p ) - l g l ( 1 - ½ n ) = a ( 1 - ½ n ) .  (2.76) 

Putting in (2.75) the expression ZH(u ,  u) + (nr - q~) taken from (2.76) we get 

ffljk -- I~I (gjk -- UjUk) -- H(u,  u)ujuk = a (gjk -- UjUk) . (2.77) 

Multiplying the two sides of (2.77) by vJ we have 

F2/tok = VkHO0 (Ho0 = H i j v i v J ) ,  (2.78) 

whence by vertical derivation 

2Vj fflOk -t- F2 ffljk ---- gjk HO0 Jr" 2Vk t-loj. 

Using (2.78) we get 

ffljk = n ( u ,  u)gjk. (2.79) 

Multiplying the two sides by gjk and contracting: 

if[ = gjkffIjk = nH(u ,  u). (2.80) 

Thus (2.79) can be written as 

17Ijk = (1 /n ) f lg jk .  (2.81) 

The left-hand side of this relation is defined by (2.58). From it we deduce by vertical 
derivation 

8~nffljk = 8; iClmk ~- ( l / n )  (~nfflgjk + 2HTjkm) • 

/-tyk being homogeneous of degree zero in v satisfying (2.58), by multiplying the two sides 
of the relation by v i and v k taking into account the homogeneity of tensor T, we get 

8 ~  = 0. 

Thus/~ and after (2.80), H ( u , u )  does not depend on the direction. Multiplying the two 
sides of (2.77) by gJ~ and using (2.80) we get 

(1 + ~. - n ) H ( u , u )  = a. (2.82) 

~. being a function on M, then H ( u , u )  = (1/n)/~ is a function on M. Substituting the 
values of H(u,  u) and/~ in (2.76) we obtain 

(~ - l n ) a  + (l + 3 . - - n ) ( n ,  - * ) =  0. (2.83) 

We call the expression H (u, u) the Ricci directional curvature. 
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Definition. A Finslerian manifold is called a generalized Einstein manifoM if the Ricci 
directional curvature is independent of  the direction. That is to say 

~ljk = C(x)gjk(X, V), (2.84) 

where C(x)  is a function on M. 

We have shown the following theorem. 

T h e o r e m  1. The Finslerian metric go ~ F°(gt )  at the critical point It = 0, go = g(0)] o f  

the integral 1 (gt) defines a GEM. 

2.7. Particular cases 

(1) We suppose that ~ is a non-zero constant. From (2.82) it follows that H(u,  u) is 

constant. Thus (2.83) is reduced to 

(~ - ½n)a  + (1 +~.  - n)(n - ~.)r = 0. (2,85) 

Hence r is constant. Now after the expression of  r defined by (2.57) r is a divergence so 
that M being compact, by integration on W ( M )  we find that r = 0 at t = 0 , a  ~ 0. Thus by 

(2.85) it follows that ~. = ½n. By (2.82) we then have at t = 0: 

a na n a 
H(u ,  u) -- -- C, /4 = H -= (2.86) 

(1 - ½n) (1 - ½ n ) '  2 ( 1 -  ½n)" 

Coro l l a ry  1. For ), non-zero constant, the Finslerian metric go ~ F°(gt )  at t = 0 is a 

critical point f o r  the integral I(gt ), and defines at this point a manifoM with constant Ricci 
directional curvature and we have at this point r = O. 

(2) Case ~. = 0. In this case the integral l (g t )  defined by (2.65) is reduced to 

: l~Itot, (2.87) ll(gt) = 
s ¢  

W(M) 

where gt ~ FO(gt) and fit = gij l-Iij. The derivative of  l l (g t )  is 

l~ (gt ) = - ( A ,  t). (2.88) 

Therefore 

Aij = ffIij - - n T u i u j -  171 (gij - ½nuiuj) . 

Following the reasoning of  the preceding section we find that H(u,  u) = a/(1  - n). On the 
other hand, M being compact,  by (2,83) we have r = 0. Therefore a = 0. Thus at t = O, 
we have 

Flij = O, r = O. 
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Corollary 2. The Finslerian metric go E F° (gt ) which makes extremum the integral Ii (gt ) 
is one for which the Ricci directional curvature is zero and we have at this point r = O. 

(3) Let us consider an integral of  the form 

12(gt) -~ f Ht(u'u)rh" 
W(M) 

Let us look for a metric go ~ F°(gt) such that 12(g0) is an extremum. By a reasoning 
identical to the previous one, we find that go must satisfy 

n( t t , u )u iu j - ' cu iu j  - H ( u , u ) ( g i j - l n u i u j )  : a ( g i j - ½ n u i u j ) ,  

where a = constant. From this relation, it follows immediately that for t = 0 we have r = 0 

and ffIij = 0. We also get the same result as before. 

(4) Let (M, g) be a Finslerian manifold with constant sectional curvature in Berwald 

connection [3]. 

We suppose also that the torsion tensor satisfies the second-order differential equation 

VoV0f  + 4 K F 2 f  = O, f = gijS~Tj, (2.89) 

where K is constant. Then (M,g) is a G E M  with H(u,u) = (n - 1)K and r = 0. 

Proof. If  (M, g) is a Finslerian manifold of  constant sectional curvature in Berwald con- 
nection we have [3] 

Hijkl -~- K (~ikgjl --~ilgjk ) (t~ Kronecker symbol), (2.90) 

where K = constant and 

Vo Vo Tijk -I- K F2Tijk ----- 0, (2.91) 

where T is Finslerain torsion tensor. By (2.90) it follows that Hjl = (n - 1)Kgjt and by 

(2.90) and (2.91) we obtain with a straightforward calculation 

- 2 r  = VoV0f  + 4 K F 2 f ,  f = gijS~Tj. (2.92) 

By (2.89) the right-hand side of  (2.92) is zero. Thus (M, g) is a GEM. [] 

2.8. Variationals of  Finslerian total scalar curvature 

2.8.1. 
Let (M, gt) be a deformation of  a compact Finslerian manifold. Let Sjk be the symmetric 

tensor defined by 

Sjk : VoTikr VOTr'j - VoTi VOT jk.  (2.93) 

In view of  studying the variationals of  the Finslerian scalar curvature we first prove the 

following lemma. 
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Lemma 6. Let ( M, gt ) be a deformation of  a Finslerian metric such that the torsion tensor 
be invariant under this deformation we have 

g #  S'jk = ~ ( T )  t (u,u)  + divergence over W(M), (2.94) 

where t denotes the derivation with respect to t E [ - e , e ]  and ~ ( T )  is a divergence on 
W (M) defined by 

with 

~,(z)  = - ~  [~z + 8(FVoZ) - 2VoZo] (2.95) 

sko... (2.96) Zi = Xi - g os ¥ik, 

X i = 2  [ g j k ~ T j k  VoT r - 2 V o T J k r ~ T j k  "~ ~ T r  VOTr],  (2.97)  

Yik = 2~70T Jri Tjrk - 4VoTjrk T Jri + ~ VoTk -- Vo~ Tk + 2~70Tr Trik. 

Before proving the lemma, we remark that it remains valid without the hypothesis on the 
invariance of torsion tensor. In this case one must add to ~ (T )  another function of T. We 
have made the hypothesis in order to reduce the calculations. 

Proof. By hypothesis T' = 0 we have 

• t 

--2~ s T jkG + T~kG" s - T~skG'Sj - T'jsG'Si , (2.98) 

whence 

• i r t • i t s  " gjk (~70TkrVOTij) = 2WoTJki [_28sT Jk G + T ~ i G n s _  2TiisG,Sj]. (2.99) 

By a calculation identical to the preceding, we get 

- -g j k (~oT i~Or t j k ) t -~ -2[g jk ' : r i j k~oT i  + , : T i V o T i ] G  Is 

+ [ ~ V o T S -  VoTiTS + 2VoTrTrSi]G'i s. (2.100) 

Taking into account (2.99) and (2.100) we have 

• s ti gjkS~k = XsG 's + Y iGs,  (2.101) 

where X and Y are defined by (2.97). Now the last term of the right-hand side can be 
written as 

s ,i _ s ,~ . (  ) s, . . . . .  ,i Y i  G s : F g  o s YikG'i/F 
• - -g  OsXiku 

= --gSkS~YikG'i + divergence over W(M), 

where we have put 

y s  = gsk yik. 
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Thus (2.101) can be written as 

g j kS~k  : Zi G~i. (2.102) 

Now G 'i is defined by (2.27). The remaining calculations are similar to those made in the 
proof of Lemma 3. 

2.8.2. 
The Ricci tensor of the Finslerian connection is defined by (2.43), whence the scalar 

curvature 

Rt = Ht + St (2.103) 

with Rt = gJkRjk; Ht = g j k H j k ;  St = gjkSjk. As in Section 2.6, let us find a Finslerian 
metric g e F°(gt) which renders extremum the integral 13(gt) defined by 

I3(g,)= f Rm,, f o,= l. (2.104) 

W(M) W(M) 

Now we have 

R,= -,J~ [~/~k + ~ j ) +  ~k] + ~, ,~k + gJkS'~k (2.105) 

After Lemmas 4 and 5 we have 

gjk H~k : nrt(u,  u) + divergence over W(M), (2.106) 

where r is defined by (2.57). M is supposed compact on deriving with respect to t the 
integral 13 (gt) and using the formulas (2.94) and (2.106) we are led to put 

Bj~ = ½1~'J~ + " ~ )  + s~ - ~,(~)u~u~ - R ( ~  - ~,u~u~), (2.1o7) 

where ~Pt(T) is defined by el (T)  = nr + lp(T). 
Thus at t = 0, for go to render extremum the integral 13 (gt) it is necessary and sufficient 

that we have at this point 

Bjk = b (gjk -- lnu juk)  , (2.108) 

where b is a constant. Let us multiply the two sides of (2.108) by vJ and v k successively 
we have 

( H o o / F 2 ) - ~ t ( T ) - R ( 1 - 1 n )  = b ( 1 -  I n ) .  (2.109) 

Substituting the expression of ~Pl (T) defined by (2.109) in (2.108) we get 

1 (Hjk  "l- Hkj )  "t- Sjk 2 

: ( H o o / F  2) UjUk a t- (R  + b)h jk ,  (hjk : gjk -- UjUk). (2.110) 
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Let us multiply both sides of (2.110) by v), taking into account the homogeneity of the 

tensor Sjk(Sok = 0 = S,o) we have 

F2ITtok = Hoovk, 

whence by vertical derivation 

ffljk = (Hoo/F2) gjk . (2.111) 

After the reasoning made in Section 2.6, Hoo/F 2 does not depend on the direction. Thus 

(M, go) is a generalized Einstein manifold. On multiplying (2. 110) by gjk we get 

(Hoo/F 2) + (n - 2)R + (n - 1)b = 0. (2.112) 

Thus it follows that the scalar R is independent from the direction. Let us put in (2.109) the 

expression of Hoo/F 2 drawn from (2.112) we have 

~, (T)  : - (½(n - 2)) R -½nb.  (2.113) 

We also denote by F°(gt), the g(t) of g deformation preserving volume of W(M) and 
torsion tensor. 

Theorem 2. Let ( M, gt ) be a deformation of a compact Finslerian manifold. The Finslerian 
metric go E FO (gt ) which renders extremum the Finslerian total scalar curvature 13 (gt ) 
defines at this point (t = O, go) a GEM. 

Let us remark that if R is independent of x, then R is constant. From (2.113) it follows 

that ~t (T)  is constant. Now q~l(T) is a divergence on W(M). Thus lpl(T) = 0. Therefore 
R = - (n/(n - 2))b. It is the case in particular if (M, g) is a Landsberg manifold 

( r o t ' j ,  = 0). 

3. Eigenvalues of the Laplaclan on the unitary fibre bundle 

3.1. Finslerian manifolds whose fibres are totally geodesic or minima 

The Finslerian connection defines at each point z ~ V (M) a decomposition of the tangent 

space to V(M) at this point. We have TzV(M) = Hz ~ Vz where Hz (respectively Vz)is 
the horizontal space (respectively vertical). At the point z e V(M), the Pfaftian derivatives 

(Ok = 8k - F*r 0k~r ", 8/~) defines a frame adapted to the decomposition of TzV(M). Let us 
put the Riemannian metric on V(M): 

dS 2 = gij(Z) dxi dxi "~- gij(Z)VviVv j,  Z E V(M). (3.1) 

Let E V ( M )  be the principal fibre bundle of linear frames on V(M) with the structure 
group G L (2n, R). Le t / )  be the Riemannian connection associated to (3.1). This connection 
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has no torsion a n d / ) G  = 0. Let (zr~) (~,/~ = i , i  = 1,2 . . . . .  n) be the matrix of this 
connection relative to the adapted frame, we have 

: : ( 3 . 2 )  

where ¢r x = (dx i, v v i ) .  D being Riemannian we have 

FY~p = ½G×X(8~Gp~ + ~pGx~ - 8xG~p) 

_!2 [GYX[aP , ax]~ + [a~, ap] y - G×X[ax, a~]p], (3.3'1 

where the bracket [a~ ,a#] is defined by: 

[Oi, ajl = - R  r oijS~, (3.4) 

r • 
[~i , 871 = G i j~r  , (3.5) 

[/~,8~] = 0, (3.6) 

where the Grij are the coefficients of the connection of Berwald associated to g. Calculating 
the right-hand side of (3.3) and taking note of the bracket expression, we obtain the 1-form 
of the Riemannian connection zr~ with respect to the adapted frames: 

i " I _ih n ~ k 7[ j = o)~j --[- ~g ~tOkhjVO , 

i " zr j  = - ( T  jk -- l R : o j k ) d X  k -  VoTi j kV i )  k, (3.7) 

7ri=j = (T i j k  + ½Ro j i k )  dx k + V o T i j V o  k, 7r ~] =O)`j," 

where wi represents the 1-form of the Finslerian connection associated to gij and where J 
T and R the tensors of torsion and curvature of V. Let x = x0 be a fixed point of M and the 
fibre manifold p - I  (x0) = V n a submanifoid of V ( M )  with Riemannian metric induced: 

d~r 2 Ip-I(x0)= gij(xo,  u) dvi dv j .  (3.8) 

Let X and I;" be two tangent vectors in (xo, v) ~ V n to p - l  (x0) we have 

b~>X = D t X  h- A(I y, X), (3.9) 

where/9 is the induced connection and A the second fundamental form of the submanifold 
p - l  (x0). Let us make explicit the right-hand side. If X = (/~;) and I;" = (/~) we have, with 
respect to the adapted frame 

^ • 

Taking into account (3.7) we obtain 

Da~8j ^ ° = T'jk(XO, 1))~ @ VoTijk(XO, v)ai, (3.10) 

where the vectors Oi and/~ are orthogonal with respect to the metric (3.1) G(8~, ai) = 0. 
From this formula it follows immediately that for V n = p - I  (xo) to be a totally geodesic 
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(respectively minima) submanifold, it is necessary and sufficient that VoT/yk = 0 (respec- 

tively necessary gjkVoT~k : r o T  i : 0). This condition is equivalent to the vanishing of 
the second tensor of the curvature P of the Finslerian connection. 

Theorem 3. In order that the fibres of  p:  V (M) ---> M be totally geodesic (respectively 

minima) it is necessary and sufficient (respectively necessary) that the second tensor of  the 
curvature o f  the Finslerian connection P (respectively VoTi = 0) is zero everywhere. 

3.2. Eigenvalues of  the Laplacian on the unitary fibre bundle 

Let (M, g) be a compact Finslerian manifold and f a differentiable function on M. By 
abuse of notation, we will denote also by f its inverse image on W(M) .  By (2.3) the 
Laplacian of f is defined by 

A f  = -- [ g i j ( z ) V i V j f  - V i f V o  Ti] , z E W ( M ) .  (3.11) 

Our objective is to study the eigenvalue of A for some Finslerian manifolds. A vector field 
X on M defines a CID for the Finslerian metric if 

L(X)g i j  --- tij = 2tp(x)gij(z), x • M,  z • W ( M ) ,  (3.12) 

where tp is a function on M, X is the lifting of X on V ( M )  and L(J~) denotes the Lie 
derivative. 

Lemma 7. We have the formula 

F2V~Tjq)i~ j = ½t~(~: - Z)  -t- F2V~tpjv' i tp j q- ½(n - 2)/~oJtpo, (3.13) 

where ~oi = ai~o, V~ denotes the vertical covariate derivative and 

~:i • F~prVr~Oi, Zi = Zi - u i ( Z , u ) ,  Zi = FTj~oJ~oi. (3.14) 

Proof. First we have, using (2.4) 

F2V~Tj~oi~oJ : FV.~ (FTj~oJ~i) - Tj~Jtpo--[- F2 (Tj~oj)2--l- g2TrTrij~oifpJ 

= -t~Z -t- (n - 2)Tj~Jtpo -t- F2TrTrijtpitp j • (3.15) 

Now by (2.28) the tensor Qij can be written as 

Qij = TrisTSjr - TrTrij • (3.16) 

Hence 

F2Tr Trij~oi ~o j : F2V.~ ~r v~ tp i -- F2 Qijtpi ~p j . 

In virtue of this relation (3.15) becomes 

F2V~tp i~o  j -~ --~Z q- (n -- 2)Tj tpJ tp0  - F2Qijqgi~o j d- F2V.~tprVr~ i. (3 .17 )  
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Now we will calculate the last term in another way: 

but 

Thus 

F 2 • o  r ~ .  i ( ") " V i ~ V r ~  = F V ~  FtprV~tp ' q- F2~rVrtP'Ti  

--F2q) r [V;V; tp  i q-~oiOjr -1- V: tp!Ti] ,  

v ; ~ i  = __~orTr, V ; v ; ~ i  = __V ro Ti ~i - Ti Vr. ~oi • 
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(3.18) 

~2 r ~ o ~ o  i --la tp Vr V i ~ -- F2tprv~tP'Ti = F 2 V ~ t p i  tp r. 

Theffore (3.18) can be written as 

F2,-,. r~o i -8~" W FEV'~Tjtpitp j FEQij~oi~o j. (3.19) V i tp V r ~0 = 

By deducing from (3.15) the relation (3.19) and on dividing by 2, we obtain the lemma. [] 

Lemma  8. Let ( M, g) be a Finslerian manifold with minima fibration, we have 

tpV0(Tj~o j)  = divergence over W ( M )  + (2/(n + 2)) F2V~tpjV°itp j. (3.20) 

Proof. By hypothesis, we have 

V0Ti = 0. (3.21) 

Now the torsion tensor is invariant by a conformal infinitesimal transformation, so its trace. 
By the Lie derivative of (3.21) we get 

viTJtpj + TitPO + F E v ~ o  j : 0.  (3.22) 

Multiplying the two sides of (3.22) by tp i and using the formula (3.13) of the preceding 
lemma, we get 

l ( n  + 2)TJ~oj~oo + F2V.~ojV°itp j q- ½8(1 ~" - Z )  ---- 0, (3 .23 )  

where I? and Z are defined by (3.14) but 

= divergence over W ( M ) -  ~oV0 (Tj~0J) . 

By putting in (3.23) we obtain the lemma, t~ 

We are now in a position to announce the following theorem. 

Theorem 4. Let (M, g) be a compact Finslerian manifold with minima fibration and with 
constant scalar curvature fit = gij iZlij admitting a CID. If  )~ is the eigenvalue of the 
Laplacian A operating on the functions of the base M ( A f  = L f )  we have 

> l:I/(n - 1). (3.24) 
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I f  M is simply connected and )~ = f l  / (n "-- 1), then (M, g) is Riemannian and  is isometric 
to a sphere. 

Proof. Let X be a CID. From (2.50) and (3.12) it follows 

with 

L ( X ) H o o  = - ( n  - 2)Vo~ao - F2~p (3.25) 

= Ditp i -F Do(~tpi) ,  (3.26) 

where tpi = 8i~ and D denote the covariant derivative in the Berwald connection. From 

(3.25) we get by vertical derivation 

8~L(X)Hoo  = L (2 )8~Hoo  = - 2 ( n  - 2)Oo~pi - 2vi~P - F 28~P .  

A second derivation gives us 

L(X) f f l i j  = - ( n  - 2)Di~oj - g i j ~  - l)iS;tP -- 1 ) j ~  1 -- ~1Jrr2~°~°'r'oi oj ~ ' ,  (3.27) 

where I7lij is defined by (2.58). Let us put H = gij f f I i j .  By hypothesis H is constant we 

have in virtue of  (3.27) 

0 = L ( X ) ~ I  = -2~oIYI + giJL(,~)IYli j  
1 r2_ i j  ~o .~o~ltj- = -2~oI=I - (n - 2 ) g i J D i t P j  - n ~  - ~[, ~; o i o j , r .  

Multiplying the two sides by tp and using the condition (3.21), we have 

½n~oVo(r~¢) + (n - 1)~ov,¢ + ~02B + ~F2gU~?87(~,~) = O. 

Replacing the expression t# Vo (Ti ~o i) defined by the previous lemma, in virtue of  (2.4) we get 

( ~cl ) n F 2 V . ~ j v . i t p  j 
z ~  ( n - - ~  ~'~° - ( n -  1 ) ( n + 2 )  

+ divergence over W ( M )  = 0, 

where ( , )  denotes the local scalar product. M being compact  by integrating on W (M) we get 

n /-~ 
(n 1)(n + 2) (FV~tpj, FVOitp j )  = (Atp -- n -- -- 1 tp, tp), (3.28) 

where ( , )  is the global scalar product on W ( M ) .  If  ), is the eigenvalue of  A the eigen- 
function ~o (A~0 = ktp). From (3.28) it follows that )~ > f t / ( n  - 1). Let us suppose 

= f t / ( n  - 1) then 

V~'~oj = 0. 

From (3.22) we then have ~ 0 o  = 0. If X is not an isomeu'y, q~o ~ 0 and Tt' = 0. After a 
result of  I~ icke  [5] (M, g) is Riemannian. By a theorem of Obata [17] from the fact that 
M is simply connected, we conclude that (M, g) is isometric to an n-sphere. [] 
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4. Second variationals of the integral I (gt) 

4.1. Second variationals of  the integral I (gt ) 

4.1.1. 
In order to simplify the calculations we treat the case ~. = i n ,  as indicated in Section 

2.7. The function flit under the integral (2.64) reduces to 

f l i t  "~" f l i t  - -  ½ n f l i t ( u , u ) ,  f l i t  = gij fliij" 

We put 

l (g t )  = f I~Itot, f ,Tt = l. 
W(M) W(M) 

By (2.72) we have 

I ' (gt)  = - ( A ,  t), 

where tjk = gjk and 

Ajk = fl i jk - ½ n H ( u , u ) u j u k  - ½ n r u j u ,  - I7t (g jk  - ½nu juk )  . 

F o r t  = 0, l ' ( go )  = O, ( M ,  go) is a G E M  fli jk = Cgjk,  

a 
C . ~ _ ~  

1 - ½n 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

and we have 

ajk = a (gjk -- ½nujuk) , (4.5) 

r It=0 = 0. (4.6) 

At, t = 0, H(u,  u), fli a n d / t  are defined by (2.86). Before calculating the second derivative 

of  1 (gt) at t = 0, we are going to prove some lemmas. 

L e m m a  9. Let T' be the deformed torsion tensor of  the Finslerian connection and t = g'. 

The following conditions are equivalent: 

(1)  Tl~jk = O, 

e i  (2) &kt j = O. 

The proof is obtained by a straightforward calculation. 

L e m m a  10. Let (M,  gt) be a deformation of  a Finslerian metric such that at t = O, the 

derivative of  the torsion tensor is zero. Then we have at this point 
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tJk ttjk It=0 = i n [(n + 2)tCu, u) - trace(t)] a'(u,u) It=o 

+divergence over W(M), 

where 

(4.7) 

H'(u, u) = H[ju'u j. 

Proof By formula (2.59) we get 

• t l • t i • • t ffIjk = gjkH'(u,u) + vkS)H (u,u) + 2vjdkH (u,u) + ~FS) [F6kH (u ,u)] .  (4.8) 

Multiplying the two sides by t jk we get 

tJk~-l~k I t = 0  = [trrHt(u,u)  + ~gjr t roS;n t (u ,u)  

+i  FtJt'8; [Fd;n'  (u,u)] ] t=0" (4.9) 

Now 

gjr troSf Ht (u, u) = Fgjr S~2r + [nt(u, u) - trace(t)] Ht(u, u) 

with 

(4.10) 

Zr "~ triuiHt(u,u) ,  Zr = Zr - Urg(Z,u).  

To calculate the last term of the right-hand side of (4.9) we put 

gr = Ftkr3~H'(u, u), gr = gr - Urg(Y, u). 

Using the hypothesis made in the lemma, we have at t = 0: 

IFtJksj [Fs~nt(u,u)] = iFgjrSjyr + i(n - -  l)g(Y,u). (4.11) 

Putting the formulas (4.11) and (4.10) in (4.9) we obtain the lemma. [] 

Lemma 11. Let (M, g) be a Finslerian manifold which satisfies the hypothesis of Lemma 
10. We have at t = O: 

[ t r ace ( t ) -  in t (u ,u)]g#f l ;k  [t=o = divergence over W(M) 

+i  n trace(t)H' (u,u) It=o. (4.12) 

Proof. Let us multiply the two sides of (4.8) by gjk, we have 

gJk Fljk = nH' (u, a) + i FgJkS~ [Fd~H' (u, u)] .  (4.13) 

Now at t = 0, trace(t) is independent of direction. At this point we have 

trace(t)gJk kljk [t=O = n. trace(t)H'(u, u) [t=o + divergence over W(M). (4.14) 
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Similarly multiplying the two sides of (4.13) by t(u,u) and using the relation (4.10), we 
find 

t(u, u)gjktZljk It=0 = trace(t)H'(u, u) It=0 + divergence over W(M). (4.15) 

Using formulas (4.14) and (4.15) we get (4.12). [] 

4.1.2 
Now we are going to calculate the second derivative of l(gt). For this it is clear that the 

derivative of g i j  is - - t  i j  . Using the derivative of r/defined by (2.14) we obtain 

"" ' - i j  ,, tiJXij (gij ½nuiuJ)tij]r/. (AUg:jr/) =[ -2 ' i r t JA i j  +'a gij + + ( a , t )  - 

(4.16) 

We must evaluate the right-hand side at t = 0, we have 

-2,irtJraiJlt= O = -2a  (tiJtij - ½ntiotioF -2) t=o' (4.17) 

- = - ~nt(u,u)) t=0' (4.18) (a,t)  (gij ½nuiu j )  tij t=0 a (trace(t) 1 2 

g i j  t= O ( i j  ft ' . _ , / . i . j ~ [  A ij " = a g g i j -  ~r=,Sij=4"* "] t=0" (4.19) 

Now vol Wt(M) = 1, by (2.20), t = g' is globally orthogonal at g, so that we have for 
every t E [--e, e]: 

f .. gU g~j rh = 0, (4.20) 

W ( M )  

whence it follows, by deriving with respect to t: 

f .,;.:;.= f [( t , t ) - t race( t )[ t race( t ) -½nt(u ,u)]] t  1. (4.21) 

W(M) W(M) 

Similarly by (2.20), t is globally orthogonal to the decomposable tensor uiu y for every 

t ~ [-~,s]: 

f . . 
u' u J g~J rh = 0. (4.22) 

W(M) 

On deriving this relation, and taking into account (2.68), we have 

f I 0 
W(M) 

In virtue of (4.21) and (4.23), the relation (4.19) can be written as 

(4.23) 
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=a {(t,t) - -  (A, g ")t=o 

- -  (trace(t) -- ½he(u, u)), trace(t) -- ½nt(u,u))}t=o" (4.24) 

It remains to evaluate the term t ij A~j at t = 0. First of all we have 

( ' ) ' t : 0  = { (g jk - ½ nuju•) 171;,- C [ t race( t ) -  ½nt(u,u)]}t= 0 . (4.25, 

On the other hand, the relation (2.7) can be written as 

(U j)' -: tjk uk -- ½t(u, U)Uj. (4.26) 

Thus tJkA~k It=0 is written as 

,Jka;k It=0 = {,'kH;k -- [ t race( , ) -  ½n,(u,u)]gJklT-I;k 

q-C [ ( t r ace ( t ) -  ½nt(u,u)) 2 +n,(u,u) 2 -  ½n(, , t)-  ln2t(u,u)2 

+n(½n-1),Jot joF-2]l t=o-½nt(u,u)r ' l t=o.  (4.27) 

Taking into account (4.16)-(4.18), (4.24), (4.27), and the Lemmas 10 and 11, the second 
derivative of l(gt) at t = 0 is obtained: 

/ " ( g o ) =  f [¢~ + ½nt(u'u)r']t=o rl 
W(M) 

+---H [11'112- ½nllt(u,u)ll 2 -  Iltrace(,)- ½n,(u,u)l[2], (4.28) 
n 

where II I12 = ( ,  > and 

= F -2 (2q/VO/~ - Vi~P)(Vot io-  ½vito0) 

+F-2VOq/[½Votrr-Ti(Vo,io-½Vito0)],  (4.29) 

q/=½n[trace( , ) - (½n+l) t (u ,u)] ,  (4.30) 

r = ViVoT/-V07)VoTi + gijs~(VoVoTy). 

Formula of the second variational. Let ( M, gt ) be a deformation of a compact Finslerian 
manifold. The second derivative of l(gt) (4.2), for a GEM is defined by the formula (4.28). 

4.2. The conformal infinitesimal deformation case 

In order to study the sign of l"(go), we will establish the following lemmas which will 
permit us to simplify the expression of l"(go). 



L e m m a  12. 
point t = 0: 

VoTi [t=o = 0, 

Then we have 
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Let ( M , gt ) be a deformation of a Finslerian metric such that we have at the 

(VoT/)' It=o = 0. (4.31) 

r It=o = 0 and t (u ,u)r '  It=o = divergence over W(M). (4.32) 

Proof. It is clear that if (M,g)  has a minima fibration (Vo~ It=o = O) then r It=o = 0 
and r '  [t--o reduced to 

r' It=o = gij [ V i ( V o ~ ) '  + 8~'VO(V07))']. 

Hence 

t(u, u)v '  It=o = divergence over W(M)  - vJ t (u ,  u)(VoTj) '  It=o 

+gijS? It(u, u)Vo(VoT)) ']  It=o - gijS?t(u, u)Vo(VoTj) ' It=o 

= divergence over W(M)  

_]_gij {V 0 [~ t (u ,u ) ]  -- V i [t(u,u)]} (V0~), It=O 
= divergence over W(M).  [] 

L e m m a  13. (M, gt) be a Finslerian manifoM and ~o be a differentiable function on M. 
Then we have the following formulas: 

(d~o, d~o) = n(d~p, u) 2 + divergence over W(M),  (4.33) 

TiVitpVotp = 1/(n - 2) [2F2QijVitpVJtp + 8(~" + Z ) ] ,  (4.34) 

where ~" and Z are defined by (3.14). 

Proof. For the first formula we have 

(d~o, d~o) = Vi~oVi~o ---- FgijS~ (Vo~oVi~o/F) + (dtp, U) 2 

= Fgi j~;~i  -}- n(d~, u) 2 

= n(d~o, u) 2 + divergence over W(M),  

where 

¢'i = ~'i - u~(d~0,u) ,  ~ i  = V~o(d,p,  u) .  

For the relation (4.34) it suffices to add the formula (3.17) to (3.19). Then we obtain (4.34).11 

L e m m a  14. Let (M, gt) be a conformal infinitesimal deformation (CID) of  a compact 
Finslerian manifold. For a generalized Einstein metric go satisfying the conditions of 
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Lemma 12 (4.32), the second variational of I (gt ) at the point go is defined by: 

l " ( g o ) = ( n - 1 ) ( n - 2 )  f [ ( A ~  ( n - I )  

w(g) 

n F2QijVi~oVJcp]  r I. (4.35) 
at (n - 1)(n - 2 )  J 

Proof. For a CID we have 

tij ---- 2~ogij, t(u,u) = 2~p, 

t~ = 2~pv i, ~ = ½n(n - 2)~p, 

trace(t) = 2n~o, 

= ln(n - 2) [(n - 2)F-2V0~PV0~p + Vi~pVi~o + TiVi~PVoq~]. 

By substituting these expressions in (4.28) and using the preceding lemmas we get the 
formula (4.35). [] 

Theorem 5. On a certain compact Finslerian manifold there exists a generalized Einstein 
metric for which the second variational of l (gt) is positive. 

Proof. In the following we suppose that the conditions (4.31) of Lemma 12 are satisfied, 
and in addition the indicatrix of (M, go) is of Einstein type: 

F2Q 
F 2 Q i j  - (n - 1) 'hij (hij  : gij - u iu j ) .  (4.36) 

Then F 2 Q for n ~ 3, is independent of v. In fact the third curvature tensor of the Finslerian 
connection satisfies the Bianchi identy [ 1] 

• i ~7(m,k, l) Vm Q jki : O, (4.37) 

where a denotes the sum of the terms obtained by permuting cyclically the indices m, k 
and I. From it we deduce by contracting i with k on the one hand, and by multiplying the 
relation so obtained by gjm on the other hand, the formula: 

V ; ( F 2  QJ i) - ½V/e(F2Q) + v lQ  = O. (4.38) 

By putting in (4.38) the expression of Qiy defined by (4.36), we get 

(n -- 3)V/°(F2Q) = 0 

Thus for n ~ 3, F 2 Q is independent of the direction defined by v. Using the formula (4.33) 
o f  Lemma 13, we find 

hijVi~ovJ(p = (1 -- 1/n)Vi~ovi~o + vertical divergence over W(M). (4.39) 

~V2Q is independent of v, we have 
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(n n 1) F2QhijV'tPVJtP" " -- F2OViqg~TitP + vertical divergence over W ( M ) .  (4.40) 

Now, we suppose that the second scalar curvature P = gij Pij of the Finslerian connection 
is zero. Then we have 

P = - ½ V 0 Q  = 0. 

Thus F 2 Q is constant. Now we know that F 2 Q < 0 [2]. For if F 2 Q > 0, then the CID is 

trivial: in fact for a Finslerian manifold of  minima fibration, we get by (3.20) and (4.34) 

(n - 2) F2 V~pj V °i ~o j = divergence over W ( M ) .  F2 Qij Vi ~°vJ ~° q- (n q- 2) 

M being compact, by integration on W ( M )  we conclude that F2QijVi~oTJcp < 0. This 

being so, we choose the torsion tensor in such a way that 

F 2 Q  

(n - 1)(n - 2) 

e sufficiently small > 0. Let tz(x) be the eigenvalue of  A for the eigenfunction ~p (A~p = 

#~o). By Theorem 4, tz (x) > /4 / (n  - 1). Let # t  be the minimum value of/z on M, M being 

connected and compact /z l  > I:l/(n - 1). Taking into account (4.35) and putting e #  = el 

we have ~ - el > f t / ( n  - 1). Thus l"(go)  > O. [] 

5. Einstein-Maxwell equations 

5.1. A connection of  directions associated to the pair (to, F )  

Let (M, g) be an n-dimensional compact pseudo-Reimannian manifold. To the pseudo- 

Riemannian connection to(V) is associated the lift of  to on V ( M ) .  It defines a covariant 

derivation, denoted V, in the vector bundle p - 1 T ( M )  ~ V ( M ) .  We denote also by W ( M )  

the unitary tangent bundle on M. Let U(x  i) (i = 1 . . . . .  n) be a local map of  M and Fij be 

a skew-symmetric tensor on M. To the pair (to, F)  is associated a connection of  directions, 

noted Jr, locally represented on p - I  (U) with local coordinates (x i , v i) by 

i i • = Gi j t (x ,  v) dx k, (5.1) a, j = to j + ~ jk  dxk 

where 

to/j : ~i jk dxk, hjk = gyk -- UjUk, Ilull = 1. (5.3) 

The (Yjk) are the coefficients of  the pseudo-Riemannian connection associated to the metric 

tensor gij and K is a constant. Let us put 

• ( ) ~ik = ~tOk = 13r ~ irk : ½ K F Fk i -1- Uk Fo i , (5.4) 
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~io0 = ~ijkvJvk = KFFjiv j = KFFo i = 2~ i, (5.5) 

Now 

Di yi m ~7 i yi m • i s i s = - - S s Y m ~ i  - Y s ~ m i "  (5.12) 

By a straightforward calculation, we see that the sum of the last two terms of the fight-hand 
side of (5.12) is zero. Thus (5.9) gives (K ~ 0): 

2 
Vi F~ = --~lUm q- .-=--~:-.K-1FS~H, 

' n l - ( + )  

where we have put 

urViFr ~ =--l . t l .  

(5.13) 

(5.14) 

n j k l ~ ( ' k G i j l - - G i j l s G S k ) - -  (~ lG~k- -GjksGS , )  

-t-Girk Grjl - GiriGrjk (G  j = vr Girj)  , 

aijkl = ½ g F - I  [hjkhrl -~-hjlhr k "~ hklhrj] Fr i, (5 .7)  

Hjl : (~iGijl - GijlsGSl) -~lGiji + GiriG jl - GiriG ji , 

and we have 

Gji  I = 0. (5 .8)  

From the identity (2.63) relative to the connection of directions D [3], it follows in virtue 
of (5.8), by contracting i and k, and by multiplying by gjl the relation thus obtained: 

'~n H = Oi (gJkG~mk) -- OigjkGijm k. (5.9) 

Now Vg = 0, we have 

Dig jk = ½a (hJiur Fr k -~- hkiur Fr j "[-ukF, j "-~--uJ Fik ) . (5oi0) 

Taking into account (5.7) and (5.10), the last term of the fight-hand side of (5.9) is zero. 

Let us put 

gJkGijm k = ½(n + l)Kyim, Yi m = F-lhrmFri. (5.11) 

whence by vertical derivation 

8 ~  i = ~i0k, ~ i  k = ~ijk, ~iji = 0, (5.6) 

where F 2 ----- gij vi vJ. 
We will denote also by D the covariant derivation associated to ~r. D is without torsion 

and admits, with respect to coframe (dx, Dr) two curvature tensors, which will be denoted, 
by abuse of notation, by H and G and are written as 
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5.2. Deformations 

We consider now a deformation of the pseudo-Riemannian structure, i.e. a one-parameter 
family t ~ [ -e ,  e] of the pseudo-Riemannian metric, leaving fixed the skew-symmetric 
tensor Fly. The derivative with respect to t of the curvature tensor H of the connection of 
directions D is defined by (2.42). Thus it follows by contracting i and k, and taking into 
account (5.8): 

• " i tr n;l  : DiGtljl - DIGttji - G jrl G i' (5.15) 

whence 

, ' ( u , u )  = HjlUJU 1 = F -2 ( 2 D I G  'i - DoG' i i ) ,  (5.16) 

where Do = v r Dr. We will prove a lemma analogous to Lemma 3. 

Lemma 15. Let ( M,  gt ) be a deformation of  a pseudo-Riemannian manifold, 7rt the con- 
nection of  directions associated to the pair (rot, F)  and Mx)  a differentiable function on 
M, then we have the formula 

~.(x) H~jui u j : qt ( F, ~,)t(u, u) -1- divergence over W (M),  (5.17) 

where 

~P(F, ~.)= ½(n + 2)F-2~'0~0 X - ~ v i v i  X + ½(n + 1 ) r y - l F ~ ) V i k  

- ( n  + 2 ) k l K  2 [(n + 1)F-2FoiFo i + f i J Fj i] 

+½(n + 2)~kKurVjFr j. (5.18) 

Proof By multiplying the two sides of (5.16) by Mx), we will calculate each term of the 
right-hand side, putting in factor the term tijuiu j we have 

~.F- 2 Doti--'i i = f7r (3.v r G ' i iF  -2 ) - fTo~.G"iF 2~.K~SSsG'ii F -2  . (5.19) 

Now the last term of the right-hand side is a divergence. For 

- 2 s .  ,i _ 2 F g S k S s (  ) = divergence over W(M). -2XF ~ 8sG i = ~'F-3G'ii~ k (5.20) 

On the other hand, by (2.25) we have in the pseudo-Riemannian case 

Gtii = ~'t'oi = ½ ~7otii • (5.21) 

Thus 

- fTokG'ii F -  2 = - ½  XTok ~7otii 

= ½ F-2~70~]o~.ti i + divergence over W ( M ) .  (5.22) 



n f  + 1 L',2nijj~•~•¢ = ½ v i v i d . .  -,~ 8 u i o j J  

374 H. Akbar-Zadeh/Journal of Geometry and Physics 17 (1995) 342-380 

Let us put 

f = ½F-2VOV0;~. (5.23) 

f being differentiable, homogeneous of degree zero in v, we have by (2.18) 

f - t r a c e ( t )  = (nf + ½ F 2 g i j S ~ ; f ) t ( ~ , u ) +  divergence over W(M). (5.24) 

Taking into account (5.23), the first term of the right-hand side of (5.24) is written as 

(5.25) 

Thus  

f .  trace(t) = ½ v i v i X t ( u ,  u) + divergence over W(M) .  (5.26) 

In virtue of (5.22), (5.26) and (5.20), the formula (5.19) is written as 

2 ~ti  - - 1 v i v i ) ~ t ( u ,  u) + divergence over W(M) .  (5.27) - X F -  Dot./ i = 

We now calculate the term 

2 ~ti - 2r, ti • ti • s -2  2 X F -  D i ~  2~Ti(~G'i F -2)  = - 2 V i ~ . F -  u -2~ .SsG 8i~ F . (5.28) 

Now 

2G'i = 2Y 'i + 2~ 'i (2Y i = Yoo), (5.29) 

where 

2y 'i = ¢7otio - ½ fTitoo. (5.30) 

And Fij supposed independent of t, deriving 2~ i defined by (5.5), with respect to t, we 
obtain 

2~ 'i = t i t ( u ,  u) -- 2tim~ m, 

where t = g'. Thus taking into account (5.29) and (5.30), we have 

- 2 Vi).GtiF -2 

= --ViL (fTotio - ½ fTi'o0) F -2 + 2t m vi3.~m - ¢ iV iLF-2 t (u ,u )  

(5.31) 

(5.32) 

The first three terms of the right-hand side are divergences. For the last term we have 
tio = giJ tjo = ½gij S;to0 and obta in  easily 

½ [(n + - t ( . ,u)  
+divergence over W(M) .  

Thus (5.32) can be written as 

(5.33) 
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-2Vi~ .G 'i F - 2 =  [½(n + 2)VoVo~.F - 2 -  v i v i  ~. - ~ i v i ~ . F - 2  ] t (u ,u )  

+divergence over W(M).  (5.34) 

Let us remark that 

Gti s li ti = • 0s + ~ s. (5.35) 

We have to calculate now the last term of the right-hand side of  (5.28): -2yG'is~Si  F -2. 
This splits into two terms respectively - 2 x  ytios~Si F -2 and ti s -2 --2X~ s~ i F . The latter can 
be written, taking into account (5.6) and of ~r  Vr = --~i: 

2 ,i s F - 2  

m , :  [ ] : - 2 X ~  s~img F = - 2 F ~  ~.~ti~imF-3 gmS +6L~ ' i~ iF-4  

= (n + 2)3. [t(u, u)~i~i - 2t i f i i~ j]  F -4 + divergence over W(M),  (5.36) 

where we have put gmS~i m = ~s i . On the other hand tij : ~ to j  and ~0 = 0, we have 

- 2 (n + 2))~tij~i~JF -4 

--'----2(n + 2)Fgik , :  [XF-5toj~J~k] + 2(, + 2)Xt0j~/~ i F -4 

= 2(n + 2)~.toj~J~ i F -4 + divergence over W(M).  (5.37) 

The last term of the right-hand side can be written as 

2( n +2)Xtoj~j  ~i F -4 

= (n + 2)~.87too~J.~iF -4 

: ( "  + 2)gjk~; [~.,O0~ik~ i] F - 4 -  (~1 + 2)~.F-4loo~Ji~ij 

divergence - (n + 2)~. [(n + 4)F-4~i~i + F-Z~Ji~ij] t(u, u). (5.38) 

In virtue of  (5.38) and (5.37) the relation (5.36) is written as 

,i ~ -2 [ ] -2~.~ s~ i F = - X ( n + 2 )  (n + 3)F-4~i~i + F-2~Ji~i j t (u ,u)  

+divergence over W(M).  (5.39) 

We have now to calculate the expression -2Xytios~S i F-Z:  

2y ri : yt~o0 , 6;y  ti : yIlOj. 

We have 

_2xyrios~S F -2  -2 sm * ti - - - - 2 F  g 3s(~y ~im) 
2F sms°'~. ,i- F - 3 )  : - -  g s [ ~ ~im + 6)~ yti ~i F - 4  

= 3Z + 2(n + 2)Xy';~i F -4,  (5.40) 

where we have put 

Zm = 2~.yti~imF-3, Zm : Zm - um(Z ,u) .  
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On the other hand 

2(n + 2)~.y'i~iF-4--(n + 2)L [fT0t~- ½~Titoo]~if -4 

= ~S - 8(cru) + ½(n + 2)~ri (~.~ i F-2)t(u,  u) 

--(n + 2)F-4~7o(~.~i)ti O, (5.41) 

where we have put 

tr = (n W 2)~itio F-3,  Si = ½(n -I- 2)~.itooF -4. 

Finally, the last term of the right-hand side can be written as 

-½(n W 2)F-4~7o(k~i)gijS;too = -½(n + 2) fgi jS;  [~7o()~i)tooF -5] 

+½(n + 2)fTj(~.~J)F-2t(u, u). 

Let us put 

Mi = ½(n + 2)~7o(~.~i)F-3t(u, u). 

The relation (5.40) can be written as 

-2~.ytios~S F -2 = 8Z + 8S - 8(au) + 8M + (n + 2)Vi (~.~i)F-2t (u, u). (5.42) 

On adding the relation (5.28) and (5.27) and taking into account (5.34), (5.39) and (5.42), we 
find the expression ~P(F, ~) defined in the lemma. The Ricci tensor Hjl defined in Section 
5.1 is symmetric, for 

G t j i  = Y t j i  = OjL°gq/g,(g =det(giJ)) Hjk = 1  • • , ~8~ 8 t n ( v ,  v).  [] 

In a manner analogous to Lemma 3 of Section 2.5, we have the following lemma. 

Lemmm 16. Let (M, gt ) be a deformation of  a pseudo-Riemannian manifold, we have 

gJkHj~=nH[juiuJ + ½FgJ'8; [FS[ (H~o/F2)] 
= nH[juiu j + divergence over W(M). 

The first term of the right-hand side is defined after Lemma 15, on putting k = 1. 

5.3. Variationals of  some scalar curvatures 

Let (M, gt) be a deformation of a compact pseudo-Riemannian manifold and rrt the 
connection of directions associated to (gt, F) and Hjk corresponding Ricci tensor. Let X(x) 
be a differentiable function on M. We define on W(M) the action functional as 

t;lt = Fit - k (x )n(u ,u) ,  Ht = giJ Hij. (5.43) 
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We denote as in Section 2.6 by R°(gt) the subfamily of the pseudo-Riemannian metrics 

such that the volume of the corresponding unitary tangent bundle is equal to one for all 

t ~ I - e ,  e].  We look for a metric gt ~ R°(gt) such that the integral J(gt) is an extremum: 

J(g,) = f :I,o,, (5.44, 
W(M) 

f = 1. (5.45) 0t 

W(M) 

By a procedure analogous to one of Section 2.6, using the previous two lemmas, the deriva- 
tive of J(gt) with respect to t is defined by 

J'(gt) = - (C, t), (5.46) 

where 

c jk  = . ~  - ~ ( x ) u ~ u ~ . ( u . u .  - * ( ~ . n  - ~)uju~ - . .  ( g ~  - ½nu~u~) . (5.47) 

and t = tjk. 
Now the volume of W(M) is constant so that on deriving (5.45) it follows by (2.14) that 

the tensor D defined by (2.74) is globally orthogonal to tij. Thus for go ~ R°(gt), t = 0 to 

give the extremum of the integral, it is necessary and sufficient that there exists a constant 
b such that we have at t = 0: 

.~  - ~ ( x , ~ u ~ . ( u . ~ ,  - ~ ( F . n  - ~ , ~  - : t  ( ~  - ½ . u ~ . )  

= b ( g j k - - ½ n u j u k ) ,  (5.48) 

where q/is defined by (5.18). Multiplying the two sides of (5.48) by vJ and v k successively 

we get 

H ( u , u , - ~ . H ( u , u ) - q / ( F , n - ) O - f l ( l - ½ n l = b ( 1 - ½ n  ) .  (5.49, 

On eliminating between (5.48) and (5.49) the expression q/(F, n - ~.) we have 

Hjk -- H(U,  U)UjUk -- [?l(gjk -- UjUk) = b(gjk  -- UjUk). (5.50) 

Multiplying the two sides by vJ: 

F2 Hok = Hoovk. (5.51) 

On the other hand, since vr87 Hrk = 0, on deriving with respect to (v J) the previous relation, 

we find 

Hjk = H ( u ,  u)gjk .  (5.52) 

Deriving once more vertically (5.52) we have 

8~nHjk = ¢~nH(u, u)g jk ,  
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whence, on multiplying the two sides by vJ and vk: 

0 = vJvksmHjk = F23mH(U,U). 

Thus, H(u ,u)  is independent of the direction. (M,g)  is therefore a GEM. At the point 
t = O, H = n i l (u ,  u), and/-) reduces to (n - 3-)H(u, u). On multiplying (5.50) by gjk we 

then have 

(1 - n + 3-)H(u,u) = b. (5.53) 

Eliminating b between (5.53) and (5.49), we get at t = 0: 

(½n - 3-) H(u ,u )  = ~P(F,n - 3-). (5.54) 

We have thus proved the following theorem. 

Theorem 6. The pseudo-Riemannian metric go ~ R° (gt ) at the critical point of  the integral 
J (gt) defines a GEM. 

For a GEM the scalar curvature H is independent of the direction, (5.13) reduces to 

Vi Fij = iAl uj .  (5.55) 

In a particular case, if 3. = ½n and K = 0, then from (5.53) and (5.54), we have !P = 0, 

C = H(u ,u )  = b/(1 - ½n), Hij = gij  = Cgij. Thus (M,g)  is an Einstein manifold. 

5.4. Einstein-Maxwell equations 

Let M be a differentiable manifold of dimension 4, g the metric tensor of normal hyper- 
bolic type [ 13], F the closed 2-form of electromagnetism,/zl the density of proper electric 

charge, u the unitary velocity vector time like. The relation (5.55) represents the equation of 
Maxwell-Lorentz [ 13]. We have shown that it is derived from the Bianchi identity relative 

to the connection of directions associated to the pair (o9, F) independently from the constant 
introduced in this connection. On the other hand by (5.7) we obtain the relation between 
the curvature tensors of zr and o9: 

• " G i ~ s  i s • Htjkl : Rtjkl -[- Vk~ijl -- ~l~ijk ~ jks l -- Gjls~ k + ~trk~ j l  -- ~irl~ jk'(5"56) 

On contracting i with k and on using the relations (5.6), (5.8) we have 

nj l  = Rj l_[_ ~i~ijl i s _ ~ i  ~r - G jls~ i rl i j" (5.57) 

After simplification let it be 

n i l =  Bit--1- ½ K (hjlur Vi Fr i --[- Ul Vi Fj i -[- uj Vi F l i )  

-~-~ g 2 (gjI gir Fir "4- 2Fjr Flr ) . (5.58) 
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In virtue of the Maxwell-Lorentz equation [13] and on putting l~l = K l p t ,  where K! is 

constant, we have by changing the indices 

, , j  = , , j  - + u /uj )  + + 2E, (5.597 

Now Maxwell tensor Tij is of the form [13] 

1 ~ rrs  __ FirFj  r (5.60) rij : ~ g i j r r s r  

Expressing 2Fir Fj r as a function of TJij and on putting it in (5.59), we have: 

3 ,,2 - ~rs  I K 2 r i j .  (5.61) Hij : Rij  - 191½KlK(gi j  Jr- u i u j )  + " ~  g i j r r s  r - 

From (5.59) we obtain 

"" 3 k . 2 ~  17rs _ g ' JHi j  = H = R + ~.~ . r s -  5 p l K I K .  (5.62) 

Taking into account the relation, we have 

Hij - ¼ H g i j  = Rij  - ½ (R  + ~.)gij - X Tij ,  (5.63) 

where we have put 

K l  19!Kl K 2 
T i j  = "t'ij + 191 ~ - U i U j ,  R + 2~k = --X - " - - ~ ,  X = -'-~, 

~. and X are constants. We know that [ 13] in the case of pure mat ter  e lectromagnet ic  f ield,  

Einstein equation is of the form 

Rij  - ½(R + ~.)gij = xTij. (5.64) 

From (5.63) it follows 

Hij = 1 H g i j .  (5.65) 

Thus (M, g) is a general ized  Einstein manifold.  

Let us now suppose that the equation of Maxwell (5.55) reduces to (#l = 0): 

Vi F ij = 0. (5.66) 

Then (5.58) is written in this case as 

Hjk : Rjk "Jr I K2 (gjkFirFir "~- 2 F j r F ~ )  . 

On making the expression of the tensor rjk intervene we get 

Hjk -- ¼Hgjk  = Rjk  -- ~ R g j k  -- Xr jk .  

In the case of a pure  e lec tromagnet ic  f i e ld  the right-hand side of this equation vanishes. 
(M, g) is again a general ized  Einstein manifold.  
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